BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15667108)

  • 1. Bioaccumulation of organic chemicals in contaminated soils: evaluation of bioassays with earthworms.
    Jager T; van der Wal L; Fleuren RH; Barendregt A; Hermens JL
    Environ Sci Technol; 2005 Jan; 39(1):293-8. PubMed ID: 15667108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms.
    Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aporrectodea caliginosa, a suitable earthworm species for field based genotoxicity assessment?
    Klobučar GI; Stambuk A; Srut M; Husnjak I; Merkaš M; Traven L; Cvetković Z
    Environ Pollut; 2011 Apr; 159(4):841-9. PubMed ID: 21292364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds.
    An YJ
    Environ Pollut; 2005 Mar; 134(2):181-6. PubMed ID: 15589644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay.
    Maenpaa KA; Kukkonen JV; Lydy MJ
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):389-98. PubMed ID: 12399909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survival, Pb-uptake and behaviour of three species of earthworm in Pb treated soils determined using an OECD-style toxicity test and a soil avoidance test.
    Langdon CJ; Hodson ME; Arnold RE; Black S
    Environ Pollut; 2005 Nov; 138(2):368-75. PubMed ID: 15951078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils.
    Van Zwieten L; Rust J; Kingston T; Merrington G; Morris S
    Sci Total Environ; 2004 Aug; 329(1-3):29-41. PubMed ID: 15262156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terrestrial avoidance behaviour tests as screening tool to assess soil contamination.
    Loureiro S; Soares AM; Nogueira AJ
    Environ Pollut; 2005 Nov; 138(1):121-31. PubMed ID: 15885863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Avoidance behaviour of two eco-physiologically different earthworms (Eisenia fetida and Aporrectodea caliginosa) in natural and artificial saline soils.
    Owojori OJ; Reinecke AJ
    Chemosphere; 2009 Apr; 75(3):279-83. PubMed ID: 19211128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic biotransformation in earthworms from contaminated soils.
    Button M; Jenkin GR; Harrington CF; Watts MJ
    J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics.
    De Silva PM; van Gestel CA
    Chemosphere; 2009 Dec; 77(11):1609-13. PubMed ID: 19836823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of studies performed to assess metal uptake by earthworms.
    Nahmani J; Hodson ME; Black S
    Environ Pollut; 2007 Jan; 145(2):402-24. PubMed ID: 16815606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring bioavailability of polychlorinated biphenyls in soil to earthworms using selective supercritical fluid extraction.
    Hallgren P; Westbom R; Nilsson T; Sporring S; Björklund E
    Chemosphere; 2006 Jun; 63(9):1532-8. PubMed ID: 16289218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil monitoring of pentachlorophenol by bioavailability and ecotoxicity measurements.
    Spagnuolo M; Puglisi E; Vernile P; Bari G; de Lillo E; Trevisan M; Ruggiero P
    J Environ Monit; 2010 Aug; 12(8):1575-81. PubMed ID: 20574577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil.
    Lachance B; Renoux AY; Sarrazin M; Hawari J; Sunahara GI
    Chemosphere; 2004 Jun; 55(10):1339-48. PubMed ID: 15081777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues effects of isoproturon in mature earthworm (Aporrectodea caliginosa) under laboratory conditions.
    Youssef Y; Mosleh I
    Commun Agric Appl Biol Sci; 2007; 72(2):117-27. PubMed ID: 18399432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and reproduction of earthworms in ultramafic soils.
    Maleri R; Reinecke SA; Mesjasz-Przybylowicz J; Reinecke AJ
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):363-70. PubMed ID: 17354041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil.
    van der Wal L; Jager T; Fleuren RH; Barendregt A; Sinnige TL; Van Gestel CA; Hermens JL
    Environ Sci Technol; 2004 Sep; 38(18):4842-8. PubMed ID: 15487794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions.
    Marinussen MP; Van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.