These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15667178)

  • 1. Characteristic self-motion of a camphor boat sensitive to ester vapor.
    Nakata S; Matsuo K
    Langmuir; 2005 Feb; 21(3):982-4. PubMed ID: 15667178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcation of self-motion depending on the reaction order.
    Nagayama M; Yadome M; Murakami M; Kato N; Kirisaka J; Nakata S
    Phys Chem Chem Phys; 2009 Feb; 11(7):1085-90. PubMed ID: 19543606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized sailing of two camphor boats in polygonal chambers.
    Nakata S; Doi Y; Kitahata H
    J Phys Chem B; 2005 Feb; 109(5):1798-802. PubMed ID: 16851161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-motion of a camphor disk on an aqueous phase depending on the alkyl chain length of sulfate surfactants.
    Nakata S; Murakami M
    Langmuir; 2010 Feb; 26(4):2414-7. PubMed ID: 19877701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic motion of a camphanic acid disk on water depending on the concentration of Triton X-100.
    Nakata S; Kirisaka J
    J Phys Chem B; 2006 Feb; 110(4):1856-9. PubMed ID: 16471755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronized motion of a mobile boundary driven by a camphor fragment.
    Nakata S; Doi Y; Kitahata H
    J Colloid Interface Sci; 2004 Nov; 279(2):503-8. PubMed ID: 15464817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment.
    Nakata S; Yoshii M; Matsuda Y; Suematsu NJ
    Chaos; 2015 Jun; 25(6):064610. PubMed ID: 26117135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.
    Suematsu NJ; Sasaki T; Nakata S; Kitahata H
    Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode switching of a self-propelled camphor disk sensitive to the photoisomerization of a molecular layer on water.
    Nakata S; Miyaji T; Matsuda Y; Yoshii M; Abe M
    Langmuir; 2014 Jul; 30(25):7353-7. PubMed ID: 24901870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocating motion of a self-propelled object on a molecular layer.
    Nakata S; Miyaji T; Sato T; Hoshikawa M; Ikura YS; Izumi S
    Chemphyschem; 2012 Dec; 13(18):4129-33. PubMed ID: 23129191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Period of Oscillatory Motion of a Camphor Boat Determined by the Dissolution and Diffusion of Camphor Molecules.
    Tenno R; Gunjima Y; Yoshii M; Kitahata H; Gorecki J; Suematsu NJ; Nakata S
    J Phys Chem B; 2018 Mar; 122(9):2610-2615. PubMed ID: 29405712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regular self-motion of a liquid droplet powered by the chemical marangoni effect.
    Nagai K; Sumino Y; Yoshikawa K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):197-200. PubMed ID: 17169535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronized motion of the water surfaces around two fixed camphor disks.
    Kitahata H; Kawata K; Takahashi S; Nakamura M; Sumino Y; Nakata S
    J Colloid Interface Sci; 2010 Nov; 351(1):299-303. PubMed ID: 20705301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into characteristic motions and negative chemotaxis of the inanimate motor sensitive to sodium chloride.
    Xu Y; Kang J; Sun M; Shan J; Guo W; Zhang Q
    J Colloid Interface Sci; 2024 Apr; 660():953-960. PubMed ID: 38281476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-motion of an oil droplet: a simple physicochemical model of active Brownian motion.
    Sumino Y; Yoshikawa K
    Chaos; 2008 Jun; 18(2):026106. PubMed ID: 18601508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New types of complex motion of a simple camphor boat.
    Löffler RJG; Roliński T; Kitahata H; Koyano Y; Górecki J
    Phys Chem Chem Phys; 2023 Mar; 25(11):7794-7804. PubMed ID: 36857664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode change in the self-motion of a benzoquinone disk coupled with a NADPH system.
    Nakata S; Matsuda Y; Ikura YS; Takeda A; Izumi S
    Chemphyschem; 2012 Feb; 13(2):520-4. PubMed ID: 22213160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Height-dependent oscillatory motion of a plastic cup with a camphor disk floated on water.
    Fujita R; Takayama N; Matsuo M; Iima M; Nakata S
    Phys Chem Chem Phys; 2023 May; 25(20):14546-14551. PubMed ID: 37191103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collective motion of symmetric camphor papers in an annular water channel.
    Ikura YS; Heisler E; Awazu A; Nishimori H; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012911. PubMed ID: 23944542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.