These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 15667199)
1. Tradeoff between mixing and transport for electroosmotic flow in heterogeneous microchannels with nonuniform surface potentials. Tian F; Li B; Kwok DY Langmuir; 2005 Feb; 21(3):1126-31. PubMed ID: 15667199 [TBL] [Abstract][Full Text] [Related]
2. On the surface conductance, flow rate, and current continuities of microfluidics with nonuniform surface potentials. Tian F; Kwok DY Langmuir; 2005 Mar; 21(6):2192-8. PubMed ID: 15752006 [TBL] [Abstract][Full Text] [Related]
3. Electrokinetically-driven flow mixing in microchannels with wavy surface. Chen CK; Cho CC J Colloid Interface Sci; 2007 Aug; 312(2):470-80. PubMed ID: 17442332 [TBL] [Abstract][Full Text] [Related]
4. Electroosmotic flow in a microcavity with nonuniform surface charges. Halpern D; Wei HH Langmuir; 2007 Aug; 23(18):9505-12. PubMed ID: 17655264 [TBL] [Abstract][Full Text] [Related]
5. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
6. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels. Hu Y; Werner C; Li D J Colloid Interface Sci; 2004 Dec; 280(2):527-36. PubMed ID: 15533426 [TBL] [Abstract][Full Text] [Related]
7. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution. Chang CC; Kuo CY; Wang CY Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels. Park HM; Lee JS; Kim TW J Colloid Interface Sci; 2007 Nov; 315(2):731-9. PubMed ID: 17681522 [TBL] [Abstract][Full Text] [Related]
9. Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization. Qian S; Duval JF J Colloid Interface Sci; 2006 Aug; 300(1):413-28. PubMed ID: 16725151 [TBL] [Abstract][Full Text] [Related]
10. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method. Wang M; Wang J; Chen S; Pan N J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843 [TBL] [Abstract][Full Text] [Related]
11. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels. Wang J; Wang M; Li Z J Colloid Interface Sci; 2006 Apr; 296(2):729-36. PubMed ID: 16226765 [TBL] [Abstract][Full Text] [Related]
12. Numerical analysis of electroosmotic flow in dense regular and random arrays of impermeable, nonconducting spheres. Hlushkou D; Seidel-Morgenstern A; Tallarek U Langmuir; 2005 Jun; 21(13):6097-112. PubMed ID: 15952866 [TBL] [Abstract][Full Text] [Related]
13. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Chen L; Conlisk AT Biomed Microdevices; 2009 Feb; 11(1):251-8. PubMed ID: 18850273 [TBL] [Abstract][Full Text] [Related]
14. Electrokinetic transport through rough microchannels. Hu Y; Werner C; Li D Anal Chem; 2003 Nov; 75(21):5747-58. PubMed ID: 14588014 [TBL] [Abstract][Full Text] [Related]
16. EOF using the Ritz method: application to superelliptic microchannels. Wang CY; Chang CC Electrophoresis; 2007 Sep; 28(18):3296-301. PubMed ID: 17703468 [TBL] [Abstract][Full Text] [Related]
17. Radial basis function interpolation supplemented lattice Boltzmann method for electroosmotic flows in microchannel. Guo P; Qian F; Zhang W; Yan H; Wang Q; Zhao C Electrophoresis; 2021 Nov; 42(21-22):2171-2181. PubMed ID: 34549443 [TBL] [Abstract][Full Text] [Related]
18. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303 [TBL] [Abstract][Full Text] [Related]
19. Streaming potential and electroosmotic flow in heterogeneous circular microchannels with nonuniform zeta potentials: requirements of flow rate and current continuities. Yang J; Masliyah JH; Kwok DY Langmuir; 2004 May; 20(10):3863-71. PubMed ID: 15969372 [TBL] [Abstract][Full Text] [Related]
20. Electrokinetic transport in microchannels with random roughness. Wang M; Kang Q Anal Chem; 2009 Apr; 81(8):2953-61. PubMed ID: 19301844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]