These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15667262)

  • 1. Interacting regulatory networks in the facultative photosynthetic bacterium, Rhodobacter sphaeroides 2.4.1.
    Kaplan S; Eraso J; Roh JH
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):51-5. PubMed ID: 15667262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA.
    Happ HN; Braatsch S; Broschek V; Osterloh L; Klug G
    Mol Microbiol; 2005 Nov; 58(3):903-14. PubMed ID: 16238636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation.
    Oh JI; Kaplan S
    Biochemistry; 1999 Mar; 38(9):2688-96. PubMed ID: 10052939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb3 cytochrome c oxidase on its function.
    Oh JI
    J Microbiol; 2006 Jun; 44(3):284-92. PubMed ID: 16820758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Eraso JM; Kaplan S
    J Bacteriol; 1998 Aug; 180(16):4044-50. PubMed ID: 9696749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dominant role of the cbb3 oxidase in regulation of photosynthesis gene expression through the PrrBA system in Rhodobacter sphaeroides 2.4.1.
    Kim YJ; Ko IJ; Lee JM; Kang HY; Kim YM; Kaplan S; Oh JI
    J Bacteriol; 2007 Aug; 189(15):5617-25. PubMed ID: 17557830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SspA, an outer membrane protein, is highly induced under salt-stressed conditions and is essential for growth under salt-stressed aerobic conditions in Rhodobacter sphaeroides f. sp. denitrificans.
    Tsuzuki M; Xu XY; Sato K; Abo M; Arioka M; Nakajima H; Kitamoto K; Okubo A
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):242-50. PubMed ID: 15647934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1.
    Eraso JM; Kaplan S
    Biochemistry; 2000 Feb; 39(8):2052-62. PubMed ID: 10684655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the active-site structure of the cbb3-type oxidase from Rhodobacter sphaeroides.
    Sharma V; Wikström M; Laakkonen L
    Biochemistry; 2008 Apr; 47(14):4221-7. PubMed ID: 18338855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides.
    Potter CA; Ward A; Laguri C; Williamson MP; Henderson PJ; Phillips-Jones MK
    J Mol Biol; 2002 Jul; 320(2):201-13. PubMed ID: 12079379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.
    Moskvin OV; Bolotin D; Wang A; Ivanov PS; Gomelsky M
    Biosystems; 2011 Feb; 103(2):125-31. PubMed ID: 21070832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression and purification of cytochrome c oxidase from Rhodobacter sphaeroides.
    Zhen Y; Qian J; Follmann K; Hayward T; Nilsson T; Dahn M; Hilmi Y; Hamer AG; Hosler JP; Ferguson-Miller S
    Protein Expr Purif; 1998 Aug; 13(3):326-36. PubMed ID: 9693057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of oxygen inhibition of nirK expression in Rhodobacter sphaeroides.
    Hartsock A; Shapleigh JP
    Microbiology (Reading); 2010 Oct; 156(Pt 10):3158-3165. PubMed ID: 20595263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and phenotypic analyses of the rdx locus of Rhodobacter sphaeroides 2.4.1.
    Roh JH; Kaplan S
    J Bacteriol; 2000 Jun; 182(12):3475-81. PubMed ID: 10852880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of Bradyrhizobium japonicum cbb(3) terminal oxidase under denitrifying conditions is subjected to redox control.
    Bueno E; Richardson DJ; Bedmar EJ; Delgado MJ
    FEMS Microbiol Lett; 2009 Sep; 298(1):20-8. PubMed ID: 19659724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodobacter sphaeroides: complexity in chemotactic signalling.
    Porter SL; Wadhams GH; Armitage JP
    Trends Microbiol; 2008 Jun; 16(6):251-60. PubMed ID: 18440816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroides.
    Min H; Guo H; Xiong J
    FEBS Lett; 2005 Jan; 579(3):808-12. PubMed ID: 15670851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria.
    Elsen S; Jaubert M; Pignol D; Giraud E
    Mol Microbiol; 2005 Jul; 57(1):17-26. PubMed ID: 15948946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N terminus of FliM is essential to promote flagellar rotation in Rhodobacter sphaeroides.
    Poggio S; Osorio A; Corkidi G; Dreyfus G; Camarena L
    J Bacteriol; 2001 May; 183(10):3142-8. PubMed ID: 11325943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized approach to the regulation and integration of gene expression.
    Oh JI; Kaplan S
    Mol Microbiol; 2001 Mar; 39(5):1116-23. PubMed ID: 11251830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.