These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15668222)

  • 1. Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection.
    Kuźniak E; Skłodowska M
    J Exp Bot; 2005 Mar; 56(413):921-33. PubMed ID: 15668222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants.
    Kuzniak E; Skłodowska M
    Planta; 2005 Sep; 222(1):192-200. PubMed ID: 15843961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves.
    Kuzniak E; Skłodowska M
    J Exp Bot; 2004 Mar; 55(397):605-12. PubMed ID: 14966215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H₂O₂ distribution during Botrytis cinerea infection in Arabidopsis.
    Simon UK; Polanschütz LM; Koffler BE; Zechmann B
    PLoS One; 2013; 8(6):e65811. PubMed ID: 23755284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea.
    Kuzniak E; Skl&z shtsls;odowska M
    Plant Sci; 2001 Mar; 160(4):723-731. PubMed ID: 11448747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants.
    Palma JM; Jiménez A; Sandalio LM; Corpas FJ; Lundqvist M; Gómez M; Sevilla F; del Río LA
    J Exp Bot; 2006; 57(8):1747-58. PubMed ID: 16698815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox systems in Botrytis cinerea: impact on development and virulence.
    Viefhues A; Heller J; Temme N; Tudzynski P
    Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity.
    Cervilla LM; Blasco B; Ríos JJ; Romero L; Ruiz JM
    Ann Bot; 2007 Oct; 100(4):747-56. PubMed ID: 17660516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Liu T; Hu X; Zhang J; Zhang J; Du Q; Li J
    BMC Plant Biol; 2018 Feb; 18(1):34. PubMed ID: 29448924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of exogenous nitric oxide on ascorbate-glutathione cycle in tomato seedlings roots under copper stress].
    Li XY; Wang XF; Lu LF; Yin B; Zhang M; Cui XM
    Ying Yong Sheng Tai Xue Bao; 2013 Apr; 24(4):1023-30. PubMed ID: 23898661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of antioxidants in photosynthetic and non-photosynthetic leaf tissues of variegated Pelargonium zonale plants.
    Vidović M; Morina F; Milić-Komić S; Vuleta A; Zechmann B; Prokić Lj; Veljović Jovanović S
    Plant Biol (Stuttg); 2016 Jul; 18(4):669-80. PubMed ID: 26712503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii.
    Mittova V; Guy M; Tal M; Volokita M
    J Exp Bot; 2004 May; 55(399):1105-13. PubMed ID: 15047761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves.
    Jin W; Wu F
    BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal effect of 405-nm light on Botrytis cinerea.
    Imada K; Tanaka S; Ibaraki Y; Yoshimura K; Ito S
    Lett Appl Microbiol; 2014 Dec; 59(6):670-6. PubMed ID: 25236427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars.
    Courbier S; Grevink S; Sluijs E; Bonhomme PO; Kajala K; Van Wees SCM; Pierik R
    Plant Cell Environ; 2020 Nov; 43(11):2769-2781. PubMed ID: 32833234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between leaf rolling and ascorbate-glutathione cycle enzymes in apoplastic and symplastic areas of Ctenanthe setosa subjected to drought stress.
    Saruhan N; Terzi R; Saglam A; Kadioglu A
    Biol Res; 2009; 42(3):315-26. PubMed ID: 19915740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.
    Jansen RM; Miebach M; Kleist E; van Henten EJ; Wildt J
    Plant Biol (Stuttg); 2009 Nov; 11(6):859-68. PubMed ID: 19796363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis-à-vis ascorbate-glutathione cycle.
    Singh S; Singh A; Srivastava PK; Prasad SM
    J Photochem Photobiol B; 2018 Jan; 178():76-84. PubMed ID: 29125985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of mitochondrial uncoupling protein conferred resistance to heat stress and Botrytis cinerea infection in tomato.
    Chen S; Liu A; Zhang S; Li C; Chang R; Liu D; Ahammed GJ; Lin X
    Plant Physiol Biochem; 2013 Dec; 73():245-53. PubMed ID: 24161754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.