BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 15668242)

  • 1. Hyaluronan biosynthesis by class I streptococcal hyaluronan synthases occurs at the reducing end.
    Tlapak-Simmons VL; Baron CA; Gotschall R; Haque D; Canfield WM; Weigel PH
    J Biol Chem; 2005 Apr; 280(13):13012-8. PubMed ID: 15668242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic characterization of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis.
    Tlapak-Simmons VL; Baggenstoss BA; Kumari K; Heldermon C; Weigel PH
    J Biol Chem; 1999 Feb; 274(7):4246-53. PubMed ID: 9933624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end.
    Weigel PH; Baggenstoss BA; Washburn JL
    Glycobiology; 2017 Jun; 27(6):536-554. PubMed ID: 28138013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and lipid dependence of the recombinant hyaluronan synthases from Streptococcus pyogenes and Streptococcus equisimilis.
    Tlapak-Simmons VL; Baggenstoss BA; Clyne T; Weigel PH
    J Biol Chem; 1999 Feb; 274(7):4239-45. PubMed ID: 9933623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of hyaluronan: direction of chain elongation.
    Bodevin-Authelet S; Kusche-Gullberg M; Pummill PE; DeAngelis PL; Lindahl U
    J Biol Chem; 2005 Mar; 280(10):8813-8. PubMed ID: 15623518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyaluronan synthase assembles chitin oligomers with -GlcNAc(α1→)UDP at the reducing end.
    Weigel PH; West CM; Zhao P; Wells L; Baggenstoss BA; Washburn JL
    Glycobiology; 2015 Jun; 25(6):632-43. PubMed ID: 25583822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyaluronan synthases; mechanisms, myths, & mysteries of three types of unique bifunctional glycosyltransferases.
    DeAngelis PL; Zimmer J
    Glycobiology; 2023 Dec; 33(12):1117-1127. PubMed ID: 37769351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An enzyme capture assay for analysis of active hyaluronan synthases.
    Kyossev Z; Weigel PH
    Anal Biochem; 2007 Dec; 371(1):62-70. PubMed ID: 17904513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme.
    DeAngelis PL; Weigel PH
    Biochemistry; 1994 Aug; 33(31):9033-9. PubMed ID: 8049203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid.
    Yu H; Stephanopoulos G
    Metab Eng; 2008 Jan; 10(1):24-32. PubMed ID: 17959405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase.
    DeAngelis PL
    Biochemistry; 1996 Jul; 35(30):9768-71. PubMed ID: 8703949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of two UDP-glucose dehydrogenases on hyaluronic acid biotransformation].
    GuoI D; Han J; Liu W; Fu Z; Zhu Q; Tao Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Nov; 30(11):1691-700. PubMed ID: 25985520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The streptococcal hyaluronan synthases are inhibited by sulfhydryl-modifying reagents, but conserved cysteine residues are not essential for enzyme function.
    Kumari K; Tlapak-Simmons VL; Baggenstoss BA; Weigel PH
    J Biol Chem; 2002 Apr; 277(16):13943-51. PubMed ID: 11799120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight-tailored hyaluronan.
    Schulte S; Doss SS; Jeeva P; Ananth M; Blank LM; Jayaraman G
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7567-7581. PubMed ID: 31367857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus.
    Chen WY; Marcellin E; Hung J; Nielsen LK
    J Biol Chem; 2009 Jul; 284(27):18007-14. PubMed ID: 19451654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular directionality of polysaccharide polymerization by the Pasteurella multocida hyaluronan synthase.
    DeAngelis PL
    J Biol Chem; 1999 Sep; 274(37):26557-62. PubMed ID: 10473619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hyaluronan synthase catalyzes the synthesis and membrane translocation of hyaluronan.
    Hubbard C; McNamara JT; Azumaya C; Patel MS; Zimmer J
    J Mol Biol; 2012 Apr; 418(1-2):21-31. PubMed ID: 22343360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The functional molecular mass of the Pasteurella hyaluronan synthase is a monomer.
    Pummill PE; Kane TA; Kempner ES; DeAngelis PL
    Biochim Biophys Acta; 2007 Feb; 1770(2):286-90. PubMed ID: 17095162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from group C Streptococcus equisimilis.
    Kumari K; Weigel PH
    J Biol Chem; 1997 Dec; 272(51):32539-46. PubMed ID: 9405467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size exclusion chromatography-multiangle laser light scattering analysis of hyaluronan size distributions made by membrane-bound hyaluronan synthase.
    Baggenstoss BA; Weigel PH
    Anal Biochem; 2006 May; 352(2):243-51. PubMed ID: 16476403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.