BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15668395)

  • 1. Surviving heat shock: control strategies for robustness and performance.
    El-Samad H; Kurata H; Doyle JC; Gross CA; Khammash M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(8):2736-41. PubMed ID: 15668395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse engineering: the architecture of biological networks.
    Khammash M
    Biotechniques; 2008 Mar; 44(3):323-9. PubMed ID: 18361784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Module-based analysis of robustness tradeoffs in the heat shock response system.
    Kurata H; El-Samad H; Iwasaki R; Ohtake H; Doyle JC; Grigorova I; Gross CA; Khammash M
    PLoS Comput Biol; 2006 Jul; 2(7):e59. PubMed ID: 16863396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding biology by reverse engineering the control.
    Tomlin CJ; Axelrod JD
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4219-20. PubMed ID: 15767568
    [No Abstract]   [Full Text] [Related]  

  • 5. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon.
    Fredriksson A; Ballesteros M; Dukan S; Nyström T
    J Bacteriol; 2005 Jun; 187(12):4207-13. PubMed ID: 15937182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic modelling of the eukaryotic heat shock response.
    Mizera A; Gambin B
    J Theor Biol; 2010 Aug; 265(3):455-66. PubMed ID: 20438739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for heterooligomer formation in the heat shock response of Escherichia coli.
    Healy EF
    Biochem Biophys Res Commun; 2012 Apr; 420(3):639-43. PubMed ID: 22450329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the heat-shock response.
    Yura T; Nakahigashi K
    Curr Opin Microbiol; 1999 Apr; 2(2):153-8. PubMed ID: 10322172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of DnaK and DnaJ proteins deprivation on Escherichia coli response to starvation.
    Jurkiewicz D; Wolska KI
    Acta Microbiol Pol; 1999; 48(2):197-201. PubMed ID: 10581673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli.
    Chow KC; Tung WL
    Biochem Biophys Res Commun; 1998 Dec; 253(2):502-5. PubMed ID: 9878565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus.
    Simão RC; Susin MF; Alvarez-Martinez CE; Gomes SL
    Mol Microbiol; 2005 Jul; 57(2):592-603. PubMed ID: 15978087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role of heat shock proteins for homologous recombination in Escherichia coli.
    Ogata Y; Miki T; Sekimizu K
    Biochem Biophys Res Commun; 1993 Nov; 197(1):34-9. PubMed ID: 7902713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regulation of Escherichia coli heat shock response].
    Liberek K
    Postepy Biochem; 1995; 41(2):94-102. PubMed ID: 7479445
    [No Abstract]   [Full Text] [Related]  

  • 18. Physiological consequences of mutations in Escherichia coli heat shock dnaK and dnaJ genes.
    Wolska KI; Paciorek J; Kardyś K
    Microbios; 1999; 97(386):55-67. PubMed ID: 10413868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Heat shock inhibits the induced expression of the SOS genes and SoxRS regulons in Escherichia coli].
    Vasil'eva SV; Makhova EV
    Genetika; 2003 Aug; 39(8):1033-8. PubMed ID: 14515458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.