These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1566898)

  • 1. Perceived vessel lumen and cell-blood velocity ratio: impact on in vivo blood flow rate determination.
    Cokelet GR; Sarelius IH
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1156-63. PubMed ID: 1566898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observations on the accuracy of photometric techniques used to measure some in vivo microvascular blood flow parameters.
    Cokelet GR; Pries AR; Kiani MF
    Microcirculation; 1998; 5(1):61-70. PubMed ID: 9702723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms.
    Kiani MF; Pries AR; Hsu LL; Sarelius IH; Cokelet GR
    Am J Physiol; 1994 May; 266(5 Pt 2):H1822-8. PubMed ID: 8203581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple "streak length method" for quantifying and characterizing red blood cell velocity profiles and blood flow in rat skeletal muscle arterioles.
    Al-Khazraji BK; Novielli NM; Goldman D; Medeiros PJ; Jackson DN
    Microcirculation; 2012 May; 19(4):327-35. PubMed ID: 22284025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data.
    Deneux T; Takerkart S; Grinvald A; Masson GS; Vanzetta I
    Neuroimage; 2012 Feb; 59(3):2569-88. PubMed ID: 21925275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of photometric methods for quantifying convective mass transport in microvessels.
    Ellsworth ML; Pittman RN
    Am J Physiol; 1986 Oct; 251(4 Pt 2):H869-79. PubMed ID: 3766764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Reciprocal effect of hemodynamics and the coating of blood vessel wall].
    Müller H
    Bibl Anat; 1969; 10():424-30. PubMed ID: 5407397
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of non-Newtonian blood and metabolic states of the blood and vessel wall on the optimum design of single vessels and the vascular bifurcation.
    Oka S; Nakai M
    Biorheology; 1989; 26(5):921-34. PubMed ID: 2620089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo and in vitro measurements of red cell velocity under epifluorescence microscopy.
    Seki J; Lipowsky HH
    Microvasc Res; 1989 Jul; 38(1):110-24. PubMed ID: 2761430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.
    Huang TC; Lin WC; Wu CC; Zhang G; Lin KP
    Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of diameter variability along a microvessel segment on pressure drop.
    Kiani MF; Cokelet GR; Sarelius IH
    Microvasc Res; 1993 May; 45(3):219-32. PubMed ID: 8321139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of absolute flow rate in vessels using a stereoscopic DSA system.
    Fencil LE; Doi K; Chua KG; Hoffman KR
    Phys Med Biol; 1989 Jun; 34(6):659-71. PubMed ID: 2662225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Re-orchestration of blood flow by micro-circulations.
    Meyer PAR
    Eye (Lond); 2018 Feb; 32(2):222-229. PubMed ID: 29350685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in axial velocity profile of red cells passing through a single capillary.
    Ellis CG; Tyml K; Strang BK
    Adv Exp Med Biol; 1989; 248():543-50. PubMed ID: 2782173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvature affects Doppler investigation of vessels: implications for clinical practice.
    Balbis S; Roatta S; Guiot C
    Ultrasound Med Biol; 2005 Jan; 31(1):65-77. PubMed ID: 15653232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of red blood cell velocity by video shuttering and image analysis.
    Parthasarathi AA; Japee SA; Pittman RN
    Ann Biomed Eng; 1999; 27(3):313-25. PubMed ID: 10374724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of gradual blood flow increase on ischaemia-reperfusion injury in the rat cremaster microcirculation model.
    Ozmen S; Ayhan S; Demir Y; Siemionow M; Atabay K
    J Plast Reconstr Aesthet Surg; 2008 Aug; 61(8):939-48. PubMed ID: 17632046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report--Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis.
    Goldsmith HL; Turitto VT
    Thromb Haemost; 1986 Jun; 55(3):415-35. PubMed ID: 3750272
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.