These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15669316)

  • 1. Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability.
    Makris KC; Harris WG; O'Connor GA; Obreza TA
    Environ Sci Technol; 2004 Dec; 38(24):6590-6. PubMed ID: 15669316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals.
    Makris KC; Harris WG; O'Connor GA; Obreza TA; Elliott HA
    Environ Sci Technol; 2005 Jun; 39(11):4280-9. PubMed ID: 15984811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraparticle phosphorus diffusion in a drinking water treatment residual at room temperature.
    Makris KC; El-Shall H; Harris WG; O'Connor GA; Obreza TA
    J Colloid Interface Sci; 2004 Sep; 277(2):417-23. PubMed ID: 15341854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation.
    Hovsepyan A; Bonzongo JC
    J Hazard Mater; 2009 May; 164(1):73-80. PubMed ID: 18814960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum water treatment residuals as permeable reactive barrier sorbents to reduce phosphorus losses.
    Miller ML; Bhadha JH; O'Connor GA; Jawitz JW; Mitchell J
    Chemosphere; 2011 May; 83(7):978-83. PubMed ID: 21377185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating a drinking-water waste by-product as a novel sorbent for arsenic.
    Makris KC; Sarkar D; Datta R
    Chemosphere; 2006 Jul; 64(5):730-41. PubMed ID: 16405955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time dependency and irreversibility of water desorption by drinking-water treatment residuals: implications for sorption mechanisms.
    Makris KC; Harris WG
    J Colloid Interface Sci; 2006 Feb; 294(1):151-4. PubMed ID: 16081085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the stability of phosphorus in lake sediments amended with water treatment residuals.
    Wang C; Bai L; Pei Y
    J Environ Manage; 2013 Jun; 122():31-6. PubMed ID: 23542229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of water treatment residuals on phosphorus solubility and leaching.
    Elliott HA; O'Connor GA; Lu P; Brinton S
    J Environ Qual; 2002; 31(4):1362-9. PubMed ID: 12175057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing effects of aerobic and anaerobic conditions on phosphorus sorption and retention capacity of water treatment residuals.
    Oliver IW; Grant CD; Murray RS
    J Environ Manage; 2011 Mar; 92(3):960-6. PubMed ID: 21129842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.
    Deliz QuiƱones K; Hovsepyan A; Oppong-Anane A; Bonzongo JC
    J Hazard Mater; 2016 Apr; 307():184-92. PubMed ID: 26780705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals.
    Dayton EA; Basta NT
    J Environ Qual; 2005; 34(3):1112-8. PubMed ID: 15888897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the inherent properties of drinking water treatment residuals on their phosphorus adsorption capacities.
    Bai L; Wang C; He L; Pei Y
    J Environ Sci (China); 2014 Dec; 26(12):2397-405. PubMed ID: 25499487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of particle size of drinking-water treatment residuals on the sorption of arsenic in the presence of competing ions.
    Caporale AG; Punamiya P; Pigna M; Violante A; Sarkar D
    J Hazard Mater; 2013 Sep; 260():644-51. PubMed ID: 23832056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term phosphorus immobilization by a drinking water treatment residual.
    Agyin-Birikorang S; O'Connor GA; Jacobs LW; Makris KC; Brinton SR
    J Environ Qual; 2007; 36(1):316-23. PubMed ID: 17215241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative approach for recycling phosphorous from agro-wastewaters using water treatment residuals (WTR).
    Zohar I; Ippolito JA; Massey MS; Litaor IM
    Chemosphere; 2017 Feb; 168():234-243. PubMed ID: 27788362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic immobilization in soils amended with drinking-water treatment residuals.
    Sarkar D; Makris KC; Vandanapu V; Datta R
    Environ Pollut; 2007 Mar; 146(2):414-9. PubMed ID: 16939697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption spectroscopy as a tool investigating arsenic(III) and arsenic(V) sorption by an aluminum-based drinking-water treatment residual.
    Makris KC; Sarkar D; Parsons JG; Datta R; Gardea-Torresdey JL
    J Hazard Mater; 2009 Nov; 171(1-3):980-6. PubMed ID: 19631458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus retention mechanisms of a water treatment residual.
    Ippolito JA; Barbarick KA; Heil DM; Chandler JP; Redente EF
    J Environ Qual; 2003; 32(5):1857-64. PubMed ID: 14535330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer.
    Sarkar D; Quazi S; Makris KC; Datta R; Khairom A
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):329-36. PubMed ID: 17657461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.