These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15669383)

  • 61. Optimization of spray-drying conditions for the large-scale preparation of Bacillus thuringiensis var. israelensis after downstream processing.
    Prabakaran G; Hoti SL
    Biotechnol Bioeng; 2008 May; 100(1):103-7. PubMed ID: 18023058
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Application Efficacy of Vectobac WDG Against Larval
    Knapp JA; Waits CM; Briley AKC; Cilek JE; Richardson AG; Pruszynski C
    J Am Mosq Control Assoc; 2018 Mar; 34(1):75-77. PubMed ID: 31442110
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of three pyrethroids on blood feeding and fecundity of Aedes aegypti.
    Liu W; Todd RG; Gerberg EJ
    J Am Mosq Control Assoc; 1986 Sep; 2(3):310-3. PubMed ID: 3507504
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Effect of the larval density of Aedes aegypti mosquitoes on their mortality as affected by Bacillus thuringiensis Berl. preparations].
    Alekseev AN; Sokolova EI; Kosovskikh VL; Khorkhordin EG; Rasnitsyn SP
    Med Parazitol (Mosk); 1983; 52(1):78-80. PubMed ID: 6843501
    [No Abstract]   [Full Text] [Related]  

  • 65. Fixed-wing, aerial application of liquid Bacillus thuringiensis H-14 (Acrobe) for control of spring Aedes mosquitoes in Michigan.
    Knepper RG; Wagner SA; Abel E; Walker ED
    J Am Mosq Control Assoc; 1994 Mar; 10(1):42-4. PubMed ID: 8014627
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Persistence of Vectobac WDG and Metoprag S-2G against Aedes aegypti larvae using a semi-field bioassay in Rio de Janeiro, Brazil.
    Lima JB; Melo NV; Valle D
    Rev Inst Med Trop Sao Paulo; 2005; 47(1):7-12. PubMed ID: 15729468
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The Mossie-Buster: a hose-driven insecticide delivery tool for the control of container-breeding mosquitoes.
    Canyon DV; Hii JL
    J Am Mosq Control Assoc; 1997 Dec; 13(4):389-94. PubMed ID: 9474568
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Frogs Respond to Commercial Formulations of the Biopesticide
    Gutierrez-Villagomez JM; Patey G; To TA; Lefebvre-Raine M; Lara-Jacobo LR; Comte J; Klein B; Langlois VS
    Environ Sci Technol; 2021 Sep; 55(18):12504-12516. PubMed ID: 34460233
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Effectiveness of aerial application of VectoBac G larvicide granules against mosquitoes in the Olomouc region in spring 2006].
    Chmela J; Mazánek L; Nakládal Z; Pesáková L; Halirová R
    Epidemiol Mikrobiol Imunol; 2007 Apr; 56(2):78-87. PubMed ID: 17593805
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Toxic effects of Bacillus thuringiensis var. kurstaki to the immature stage of Aedes aegypti].
    Chen WJ
    Gaoxiong Yi Xue Ke Xue Za Zhi; 1988 Nov; 4(11):627-32. PubMed ID: 3244164
    [No Abstract]   [Full Text] [Related]  

  • 71. Co-expression of Bacillus thuringiensis Cry4Ba and Cyt2Aa2 in Escherichia coli revealed high synergism against Aedes aegypti and Culex quinquefasciatus larvae.
    Promdonkoy B; Promdonkoy P; Panyim S
    FEMS Microbiol Lett; 2005 Nov; 252(1):121-6. PubMed ID: 16168580
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Do herbicide treatments reduce the sensitivity of mosquito larvae to insecticides?
    Boyer S; Sérandour J; Lempérière G; Raveton M; Ravanel P
    Chemosphere; 2006 Oct; 65(4):721-4. PubMed ID: 16574189
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chemical composition and anti-mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae).
    Choochote W; Chaiyasit D; Kanjanapothi D; Rattanachanpichai E; Jitpakdi A; Tuetun B; Pitasawat B
    J Vector Ecol; 2005 Dec; 30(2):302-9. PubMed ID: 16599168
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bioactivity of citrus seed for mosquito-borne diseases larval control.
    Sumroiphon S; Yuwaree C; Arunlertaree C; Komalamisra N; Rongsriyam Y
    Southeast Asian J Trop Med Public Health; 2006; 37 Suppl 3():123-7. PubMed ID: 17547066
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Laboratory and field studies with 32P labeled Toxorhynchites rutilus rutilus.
    Smittle BJ; Focks DA
    J Am Mosq Control Assoc; 1986 Dec; 2(4):474-7. PubMed ID: 3507524
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of sub-lethal concentrations of synthetic insecticides and Callitris glaucophylla extracts on the development of Aedes aegypti.
    Shaalan EA; Canyon DV; Younes MW; Abdel-Wahab H; Mansour AH
    J Vector Ecol; 2005 Dec; 30(2):295-8. PubMed ID: 16599166
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Efficacy of a new formulation of Bacillus thuringiensis var israelensis (Bti) in laboratory and field conditions of Kumaun foothills of Uttaranchal, India.
    Sharma SN; Shukla RP; Mittal PK; Adak T; Kumar A
    J Commun Dis; 2003 Dec; 35(4):290-9. PubMed ID: 15909759
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Laboratory evaluation of Bacillus thuringiensis (Vectobac WDG) against mosquito larvae, Culex pipiens and Culiseta longiareolata.
    Boudjelida H; Aïssaoui L; Bouaziz A; Smagghe G; Soltani N
    Commun Agric Appl Biol Sci; 2008; 73(3):603-9. PubMed ID: 19226801
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The use of the copepod Mesocyclops longisetus as a biological control agent for Aedes aegypti in Cali, Colombia.
    Suárez-Rubio M; Suárez ME
    J Am Mosq Control Assoc; 2004 Dec; 20(4):401-4. PubMed ID: 15669381
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Antifeedant and sublethal effects of imidacloprid on Asian citrus psyllid, Diaphorina citri.
    Boina DR; Onagbola EO; Salyani M; Stelinski LL
    Pest Manag Sci; 2009 Aug; 65(8):870-7. PubMed ID: 19431217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.