These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 15669702)
1. Implementation of depth-dependent soil concentrations in multimedia mass balance models. Hollander A; Hessels L; De Voogt P; van de Meent D SAR QSAR Environ Res; 2004; 15(5-6):457-68. PubMed ID: 15669702 [TBL] [Abstract][Full Text] [Related]
2. Validation of predicted exponential concentration profiles of chemicals in soils. Hollander A; Baijens I; Ragas A; Huijbregts M; van de Meent D Environ Pollut; 2007 Jun; 147(3):757-63. PubMed ID: 17137689 [TBL] [Abstract][Full Text] [Related]
3. Spatial variance in multimedia mass balance models: comparison of LOTOS-EUROS and SimpleBox for PCB-153. Hollander A; Sauter F; den Hollander H; Huijbregts M; Ragas A; van de Meent D Chemosphere; 2007 Jul; 68(7):1318-26. PubMed ID: 17331563 [TBL] [Abstract][Full Text] [Related]
4. SimpleBox 4.0: Improving the model while keeping it simple…. Hollander A; Schoorl M; van de Meent D Chemosphere; 2016 Apr; 148():99-107. PubMed ID: 26802268 [TBL] [Abstract][Full Text] [Related]
5. Modeling the plant uptake of organic chemicals, including the soil-air-plant pathway. Collins CD; Finnegan E Environ Sci Technol; 2010 Feb; 44(3):998-1003. PubMed ID: 20055408 [TBL] [Abstract][Full Text] [Related]
6. Dynamic modeling of chemical fate and transport in multimedia environments at watershed scale-I: theoretical considerations and model implementation. Luo Y; Gao Q; Yang X J Environ Manage; 2007 Apr; 83(1):44-55. PubMed ID: 16690204 [TBL] [Abstract][Full Text] [Related]
7. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data. Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857 [TBL] [Abstract][Full Text] [Related]
8. Relationships of Indoor, Outdoor, and Personal Air (RIOPA). Part I. Collection methods and descriptive analyses. Weisel CP; Zhang J; Turpin BJ; Morandi MT; Colome S; Stock TH; Spektor DM; Korn L; Winer AM; Kwon J; Meng QY; Zhang L; Harrington R; Liu W; Reff A; Lee JH; Alimokhtari S; Mohan K; Shendell D; Jones J; Farrar L; Maberti S; Fan T Res Rep Health Eff Inst; 2005 Nov; (130 Pt 1):1-107; discussion 109-27. PubMed ID: 16454009 [TBL] [Abstract][Full Text] [Related]
9. Chemical-specific representation of air--soil exchange and soil penetration in regional multimedia models. McKone TE; Bennett DH Environ Sci Technol; 2003 Jul; 37(14):3123-32. PubMed ID: 12901660 [TBL] [Abstract][Full Text] [Related]
10. A dynamic model of the fate of organic chemicals in a multilayered air/soil system: development and illustrative application. Ghirardello D; Morselli M; Semplice M; Di Guardo A Environ Sci Technol; 2010 Dec; 44(23):9010-7. PubMed ID: 21053937 [TBL] [Abstract][Full Text] [Related]
11. Estimating overall persistence and long-range transport potential of persistent organic pollutants: a comparison of seven multimedia mass balance models and atmospheric transport models. Hollander A; Scheringer M; Shatalov V; Mantseva E; Sweetman A; Roemer M; Baart A; Suzuki N; Wegmann F; van de Meent D J Environ Monit; 2008 Oct; 10(10):1139-47. PubMed ID: 18843390 [TBL] [Abstract][Full Text] [Related]
12. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues. Scholtz MT; Bidleman TF Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778 [TBL] [Abstract][Full Text] [Related]
13. A semi-quantitative approach to deriving a model structure for the uptake of organic chemicals by vegetation. Collins CD Int J Phytoremediation; 2008; 10(5):371-7. PubMed ID: 19260220 [TBL] [Abstract][Full Text] [Related]
14. A field experiment with variable-suction multi-compartment samplers to measure the spatio-temporal distribution of solute leaching in an agricultural soil. Bloem E; Hogervorst FA; de Rooij GH J Contam Hydrol; 2009 Apr; 105(3-4):131-45. PubMed ID: 19193474 [TBL] [Abstract][Full Text] [Related]
15. Experimental evidence against diffusion control of Hg evasion from soils. Johnson DW; Benesch JA; Gustin MS; Schorran DS; Lindberg SE; Coleman JS Sci Total Environ; 2003 Mar; 304(1-3):175-84. PubMed ID: 12663182 [TBL] [Abstract][Full Text] [Related]
16. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils. McLachlan MS; Czub G; Wania F Environ Sci Technol; 2002 Nov; 36(22):4860-7. PubMed ID: 12487310 [TBL] [Abstract][Full Text] [Related]
17. Multimedia environmental chemical partitioning from molecular information. Martínez I; Grifoll J; Giralt F; Rallo R Sci Total Environ; 2010 Dec; 409(2):412-22. PubMed ID: 21059471 [TBL] [Abstract][Full Text] [Related]
18. Fruit Tree model for uptake of organic compounds from soil and air. Trapp S SAR QSAR Environ Res; 2007; 18(3-4):367-87. PubMed ID: 17514576 [TBL] [Abstract][Full Text] [Related]
19. Fate of diuron and linuron in a field lysimeter experiment. Guzzella L; Capri E; Di Corcia A; Barra Caracciolo A; Giuliano G J Environ Qual; 2006; 35(1):312-23. PubMed ID: 16397107 [TBL] [Abstract][Full Text] [Related]
20. Dynamic modeling of chemical fate and transport in multimedia environments at watershed scale-II: trichloroethylene test case. Luo Y; Gao Q; Yang X J Environ Manage; 2007 Apr; 83(1):56-65. PubMed ID: 16678337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]