These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15669703)

  • 1. Application of counterpropagation artificial neural network for modelling properties of fish antibiotics.
    Maran E; Novic M; Barbieri P; Zupan J
    SAR QSAR Environ Res; 2004; 15(5-6):469-80. PubMed ID: 15669703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR modelling of bioconcentration factor using hydrophobicity, hydrogen bonding and topological descriptors.
    Dearden JC; Hewitt M
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):671-80. PubMed ID: 21120755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new strategy for using supervised artificial neural networks in QSAR.
    Devillers J
    SAR QSAR Environ Res; 2005 Oct; 16(5):433-42. PubMed ID: 16272042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning neural and fuzzy-neural networks for toxicity modeling.
    Mazzatorta P; Benfenati E; Neagu CD; Gini G
    J Chem Inf Comput Sci; 2003; 43(2):513-8. PubMed ID: 12653515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors.
    Katritzky AR; Kuanar M; Dobchev DA; Vanhoecke BW; Karelson M; Parmar VS; Stevens CV; Bracke ME
    Bioorg Med Chem; 2006 Oct; 14(20):6933-9. PubMed ID: 16908166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR modeling of mono- and bis-quaternary ammonium salts that act as antagonists at neuronal nicotinic acetylcholine receptors mediating dopamine release.
    Zheng F; Bayram E; Sumithran SP; Ayers JT; Zhan CG; Schmitt JD; Dwoskin LP; Crooks PA
    Bioorg Med Chem; 2006 May; 14(9):3017-37. PubMed ID: 16431111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSAR model for predicting pesticide aquatic toxicity.
    Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E
    J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study.
    Vracko M; Bandelj V; Barbieri P; Benfenati E; Chaudhry Q; Cronin M; Devillers J; Gallegos A; Gini G; Gramatica P; Helma C; Mazzatorta P; Neagu D; Netzeva T; Pavan M; Patlewicz G; Randić M; Tsakovska I; Worth A
    SAR QSAR Environ Res; 2006 Jun; 17(3):265-84. PubMed ID: 16815767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSPR studies on soot-water partition coefficients of persistent organic pollutants by using artificial neural network.
    Jiao L
    Chemosphere; 2010 Jul; 80(6):671-5. PubMed ID: 20452639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods.
    Xia B; Liu K; Gong Z; Zheng B; Zhang X; Fan B
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):787-94. PubMed ID: 18950860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved prediction of fish bioconcentration factor of hydrophobic chemicals.
    Dearden JC; Shinnawei NM
    SAR QSAR Environ Res; 2004; 15(5-6):449-55. PubMed ID: 15669701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.
    Liu G; Yu J
    Water Res; 2005 May; 39(10):2048-55. PubMed ID: 15913706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors.
    D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E
    Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural networks in building QSAR models.
    Baskin II; Palyulin VA; Zefirov NS
    Methods Mol Biol; 2008; 458():137-58. PubMed ID: 19065809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural networks and the study of the psychoactivity of cannabinoid compounds.
    Honório KM; de Lima EF; Quiles MG; Romero RA; Molfetta FA; da Silva AB
    Chem Biol Drug Des; 2010 Jun; 75(6):632-40. PubMed ID: 20565477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counter propagation artificial neural network categorical models for prediction of carcinogenicity for non-congeneric chemicals.
    Fjodorova N; Vracko M; Jezierska A; Novic M
    SAR QSAR Environ Res; 2010 Jan; 21(1):57-75. PubMed ID: 20373214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of acute toxicity in fish by using QSAR methods and chemical modes of action.
    Lozano S; Lescot E; Halm MP; Lepailleur A; Bureau R; Rault S
    J Enzyme Inhib Med Chem; 2010 Apr; 25(2):195-203. PubMed ID: 19874208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.