These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 15669703)

  • 21. QSAR modeling of the inhibition of glycogen synthase kinase-3.
    Katritzky AR; Pacureanu LM; Dobchev DA; Fara DC; Duchowicz PR; Karelson M
    Bioorg Med Chem; 2006 Jul; 14(14):4987-5002. PubMed ID: 16650999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the activity of furin inhibitors using artificial neural network.
    Worachartcheewan A; Nantasenamat C; Naenna T; Isarankura-Na-Ayudhya C; Prachayasittikul V
    Eur J Med Chem; 2009 Apr; 44(4):1664-73. PubMed ID: 18977558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. U.S. EPA regulatory perspectives on the use of QSAR for new and existing chemical evaluations.
    Zeeman M; Auer CM; Clements RG; Nabholz JV; Boethling RS
    SAR QSAR Environ Res; 1995; 3(3):179-201. PubMed ID: 8564854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting physical properties of emerging compounds with limited physical and chemical data: QSAR model uncertainty and applicability to military munitions.
    Bennett ER; Clausen J; Linkov E; Linkov I
    Chemosphere; 2009 Nov; 77(10):1412-8. PubMed ID: 19793608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of air to liver partition coefficient for volatile organic compounds using QSAR approaches.
    Dashtbozorgi Z; Golmohammadi H
    Eur J Med Chem; 2010 Jun; 45(6):2182-90. PubMed ID: 20153567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming.
    Shi W; Zhang X; Shen Q
    Eur J Med Chem; 2010 Jan; 45(1):49-54. PubMed ID: 19819596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSPR modeling of flash points: an update.
    Katritzky AR; Stoyanova-Slavova IB; Dobchev DA; Karelson M
    J Mol Graph Model; 2007 Sep; 26(2):529-36. PubMed ID: 17532242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative structure-activity relationship models for prediction of sensory irritants (logRD50) of volatile organic chemicals.
    Luan F; Ma W; Zhang X; Zhang H; Liu M; Hu Z; Fan BT
    Chemosphere; 2006 May; 63(7):1142-53. PubMed ID: 16307788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting modes of toxic action from chemical structure: an overview.
    Bradbury SP
    SAR QSAR Environ Res; 1994; 2(1-2):89-104. PubMed ID: 8790641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand-based virtual screening procedure for the prediction and the identification of novel β-amyloid aggregation inhibitors using Kohonen maps and Counterpropagation Artificial Neural Networks.
    Afantitis A; Melagraki G; Koutentis PA; Sarimveis H; Kollias G
    Eur J Med Chem; 2011 Feb; 46(2):497-508. PubMed ID: 21167625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting MDCK cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis.
    Chen LL; Yao J; Yang JB; Yang J
    Acta Pharmacol Sin; 2005 Nov; 26(11):1322-33. PubMed ID: 16225754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure- and property-activity relationship models for prediction of microbial toxicity of organic chemicals to activated sludge.
    Nirmalakhandan N; Egemen E; Trevizo C; Xu S
    Ecotoxicol Environ Saf; 1998 Feb; 39(2):112-9. PubMed ID: 9515083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study on prediction of the bio-toxicity of substituted benzene based on artificial neural network.
    Gao DW; Wang P; Liang H; Peng YZ
    J Environ Sci Health B; 2003 Sep; 38(5):571-9. PubMed ID: 12929716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro dermal absorption rate testing of certain chemicals of interest to the Occupational Safety and Health Administration: summary and evaluation of USEPA's mandated testing.
    Fasano WJ; McDougal JN
    Regul Toxicol Pharmacol; 2008 Jul; 51(2):181-94. PubMed ID: 18501488
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression.
    Ghasemi J; Saaidpour S
    Anal Chim Acta; 2007 Dec; 604(2):99-106. PubMed ID: 17996529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can 'Bacterial-Metabolite-Likeness' model improve odds of 'in silico' antibiotic discovery?
    Cherkasov A
    J Chem Inf Model; 2006; 46(3):1214-22. PubMed ID: 16711741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression.
    Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.