BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15669832)

  • 1. Dynamics of hyaluronan oligosaccharides revealed by 15N relaxation.
    Almond A; DeAngelis PL; Blundell CD
    J Am Chem Soc; 2005 Feb; 127(4):1086-7. PubMed ID: 15669832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of 15N-NMR to resolve molecular details in isotopically-enriched carbohydrates: sequence-specific observations in hyaluronan oligomers up to decasaccharides.
    Blundell CD; DeAngelis PL; Day AJ; Almond A
    Glycobiology; 2004 Nov; 14(11):999-1009. PubMed ID: 15215231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of hyaluronic acid oligomers by experimental and theoretical NMR, and molecular dynamics simulation.
    Donati A; Magnani A; Bonechi C; Barbucci R; Rossi C
    Biopolymers; 2001 Nov; 59(6):434-45. PubMed ID: 11598878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix.
    Almond A; Deangelis PL; Blundell CD
    J Mol Biol; 2006 May; 358(5):1256-69. PubMed ID: 16584748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete assignment of hyaluronan oligosaccharides up to hexasaccharides.
    Blundell CD; Reed MA; Almond A
    Carbohydr Res; 2006 Dec; 341(17):2803-15. PubMed ID: 17056022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deducing polymeric structure from aqueous molecular dynamics simulations of oligosaccharides: predictions from simulations of hyaluronan tetrasaccharides compared with hydrodynamic and X-ray fibre diffraction data.
    Almond A; Brass A; Sheehan JK
    J Mol Biol; 1998 Dec; 284(5):1425-37. PubMed ID: 9878361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependencies of amide 1H- and 15N-chemical shifts in hyaluronan oligosaccharides.
    Blundell CD; Almond A
    Magn Reson Chem; 2007 May; 45(5):430-3. PubMed ID: 17372972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyaluronan chain conformation and dynamics.
    Furlan S; La Penna G; Perico A; Cesàro A
    Carbohydr Res; 2005 Apr; 340(5):959-70. PubMed ID: 15780260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the frequency range of the solid-state T1rho experiment for heteronuclear dipolar relaxation.
    Krushelnitsky A; Kurbanov R; Reichert D; Hempel G; Schneider H; Fedotov V
    Solid State Nucl Magn Reson; 2002 Dec; 22(4):423-38. PubMed ID: 12539970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic and chemical methods for the generation of pure hyaluronan oligosaccharides with both odd and even numbers of monosaccharide units.
    Blundell CD; Almond A
    Anal Biochem; 2006 Jun; 353(2):236-47. PubMed ID: 16624243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new spin probe of protein dynamics: nitrogen relaxation in 15N-2H amide groups.
    Xu J; Millet O; Kay LE; Skrynnikov NR
    J Am Chem Soc; 2005 Mar; 127(9):3220-9. PubMed ID: 15740163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation.
    Lundström P; Akke M
    Chembiochem; 2005 Sep; 6(9):1685-92. PubMed ID: 16028301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy.
    Tugarinov V; Sprangers R; Kay LE
    J Am Chem Soc; 2007 Feb; 129(6):1743-50. PubMed ID: 17249677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of protein backbone motion from carbonyl 13C and amide 15N NMR relaxation.
    Chang SL; Tjandra N
    J Magn Reson; 2005 May; 174(1):43-53. PubMed ID: 15809171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New strategy for the conformational analysis of carbohydrates based on NOE and 13C NMR coupling constants. Application to the flexible polysaccharide of Streptococcus mitis J22.
    Martin-Pastor M; Bush CA
    Biochemistry; 1999 Jun; 38(25):8045-55. PubMed ID: 10387049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of interdomain dynamics in a two-domain protein using residual dipolar couplings together with 15N relaxation data.
    Ryabov Y; Fushman D
    Magn Reson Chem; 2006 Jul; 44 Spec No():S143-51. PubMed ID: 16823894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [13C,15N]2-Acetamido-2-deoxy-D-aldohexoses and their methyl glycosides: synthesis and NMR investigations of J-couplings involving 1H, 13C, and 15N.
    Zhu Y; Pan Q; Thibaudeau C; Zhao S; Carmichael I; Serianni AS
    J Org Chem; 2006 Jan; 71(2):466-79. PubMed ID: 16408953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the carboxylate chemical shift to resolve degenerate resonances in spectra of 13C-labelled glycosaminoglycans.
    Colebrooke SA; Blundell CD; DeAngelis PL; Campbell ID; Almond A
    Magn Reson Chem; 2005 Oct; 43(10):805-15. PubMed ID: 15996005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation.
    Giraud N; Blackledge M; Goldman M; Böckmann A; Lesage A; Penin F; Emsley L
    J Am Chem Soc; 2005 Dec; 127(51):18190-201. PubMed ID: 16366572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic modeling of flexible biomolecules applied to NMR relaxation. 2. Interpretation of complex dynamics in linear oligosaccharides.
    Kotsyubynskyy D; Zerbetto M; Soltesova M; Engström O; Pendrill R; Kowalewski J; Widmalm G; Polimeno A
    J Phys Chem B; 2012 Dec; 116(50):14541-55. PubMed ID: 23185964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.