These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 1567028)

  • 41. Effects of circulatory arrest and cardiopulmonary bypass on cerebral autoregulation in neonatal swine.
    Padawer-Curry JA; Volk LE; Mavroudis CD; Ko TS; Morano VC; Busch DR; Rosenthal TM; Melchior RW; Shade BC; Schiavo KL; Boorady TW; Schmidt AL; Andersen KN; Breimann JS; Jahnavi J; Mensah-Brown KG; Yodh AG; Mascio CE; Kilbaugh TJ; Licht DJ; White BR; Baker WB
    Pediatr Res; 2022 May; 91(6):1374-1382. PubMed ID: 33947997
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Absent diastolic cerebral blood flow velocity after circulatory arrest but not after low flow in infants.
    Astudillo R; van der Linden J; Ekroth R; Wesslén O; Hallhagen S; Scallan M; Shore D; Lincoln C
    Ann Thorac Surg; 1993 Sep; 56(3):515-9. PubMed ID: 8379725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of rewarming speed during hypothermic cardiopulmonary bypass on cerebral pressure-flow relation.
    Diephuis JC; Balt J; van Dijk D; Moons KG; Knape JT
    Acta Anaesthesiol Scand; 2002 Mar; 46(3):283-8. PubMed ID: 11939919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children.
    Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG
    J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Beta-adrenergic regulation of the cerebral microcirculation after hypothermic cardiopulmonary bypass.
    Sellke FW; Tofukuji M; Stamler A; Li J; Wang SY
    Circulation; 1997 Nov; 96(9 Suppl):II-304-10. PubMed ID: 9386115
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass.
    Brady K; Joshi B; Zweifel C; Smielewski P; Czosnyka M; Easley RB; Hogue CW
    Stroke; 2010 Sep; 41(9):1951-6. PubMed ID: 20651274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The influence of aging on cerebral blood flow and oxygen metabolism during moderate hypothermic cardiopulmonary bypass--a clinical study by means of transcranial Doppler ultrasound].
    Kamihira S; Honda T; Tonomoto N; Suzuki Y; Ishiguro S; Kuroda H; Sasaki S; Mori T
    Nihon Kyobu Geka Gakkai Zasshi; 1994 Aug; 42(8):1163-70. PubMed ID: 7963830
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cerebral perfusion during nonpulsatile cardiopulmonary bypass.
    Lundar T; Lindegaard KF; Frøysaker T; Aaslid R; Wiberg J; Nornes H
    Ann Thorac Surg; 1985 Aug; 40(2):144-50. PubMed ID: 3161464
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Evaluation of cerebral circulation during cardiopulmonary bypass using near-infrared spectroscopy].
    Ohata T; Sawa Y; Ohtake S; Nishimura M; Hirata N; Kagisaki K; Taketani S; Yamaguchi T; Matsuda H
    Jpn J Thorac Cardiovasc Surg; 1998 Jul; 46(7):603-9. PubMed ID: 9750442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of differing acid-base regulation on cerebral blood flow autoregulation during cardiopulmonary bypass.
    Patel RL; Turtle MR; Chambers DJ; Venn GE
    Eur J Cardiothorac Surg; 1992; 6(6):302-6; discussion 307. PubMed ID: 1616726
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease.
    Gravlee GP; Roy RC; Stump DA; Hudspeth AS; Rogers AT; Prough DS
    J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Static cerebrovascular pressure autoregulation remains intact during deep hypothermia.
    Goswami D; McLeod K; Leonard S; Kibler K; Easley RB; Fraser CD; Andropoulos D; Brady K
    Paediatr Anaesth; 2017 Sep; 27(9):911-917. PubMed ID: 28719038
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [The usefulness of combined measurements of transcranial Doppler sonogram and somatosensory evoked potentials during hypothermic cardiopulmonary bypass].
    Endo S; Kawada T; Nakamura S; Kamata S; Funaki S; Miyamoto S; Kikuchi K; Ohkawa I; Okada Y; Kitanaka Y
    Kyobu Geka; 1994 Nov; 47(12):970-5. PubMed ID: 7990288
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cerebral autoregulation during deep hypothermic nonpulsatile cardiopulmonary bypass with selective cerebral perfusion in dogs.
    Tanaka J; Shiki K; Asou T; Yasui H; Tokunaga K
    J Thorac Cardiovasc Surg; 1988 Jan; 95(1):124-32. PubMed ID: 3336226
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Moderate hypothermia with low flow rate cardiopulmonary bypass used in surgeries for congenital heart defects.
    Huang H; Wang W; Zhu D
    ASAIO J; 2007; 53(6):684-6. PubMed ID: 18043147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Utility of cerebral oxymetry for assessing cerebral arteriolar carbon dioxide reactivity during cardiopulmonary bypass.
    Ariturk C; Okten M; Ozgen ZS; Erkek E; Uysal P; Gullu U; Senay S; Karabulut H; Alhan C; Toraman F
    Heart Surg Forum; 2014 Jun; 17(3):E169-72. PubMed ID: 25002395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of hypothermia on rectal mucosal perfusion in infants undergoing cardiopulmonary bypass.
    Booker PD; Prosser DP; Franks R
    Br J Anaesth; 1996 Nov; 77(5):591-6. PubMed ID: 8957973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of perfusion pressure on cerebral blood flow during normothermic cardiopulmonary bypass.
    Newman MF; Croughwell ND; White WD; Lowry E; Baldwin BI; Clements FM; Davis RD; Jones RH; Amory DW; Reves JG
    Circulation; 1996 Nov; 94(9 Suppl):II353-7. PubMed ID: 8901774
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children.
    Kern FH; Ungerleider RM; Quill TJ; Baldwin B; White WD; Reves JG; Greeley WJ
    J Thorac Cardiovasc Surg; 1991 Apr; 101(4):618-22. PubMed ID: 2008099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of factors related to jugular venous oxygen saturation during cardiopulmonary bypass.
    Yoshitake A; Goto T; Baba T; Shibata Y
    J Cardiothorac Vasc Anesth; 1999 Apr; 13(2):160-4. PubMed ID: 10230949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.