These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15670623)

  • 1. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets. A review.
    Zalewski PD; Truong-Tran AQ; Grosser D; Jayaram L; Murgia C; Ruffin RE
    Pharmacol Ther; 2005 Feb; 105(2):127-49. PubMed ID: 15670623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc metabolism in the airway: basic mechanisms and drug targets.
    Zalewski PD
    Curr Opin Pharmacol; 2006 Jun; 6(3):237-43. PubMed ID: 16540372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the role of zinc in the respiratory epithelium.
    Truong-Tran AQ; Carter J; Ruffin R; Zalewski PD
    Immunol Cell Biol; 2001 Apr; 79(2):170-7. PubMed ID: 11264713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation.
    Truong-Tran AQ; Ruffin RE; Foster PS; Koskinen AM; Coyle P; Philcox JC; Rofe AM; Zalewski PD
    Am J Respir Cell Mol Biol; 2002 Sep; 27(3):286-96. PubMed ID: 12204890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunity, inflammation, and remodeling in the airway epithelial barrier: epithelial-viral-allergic paradigm.
    Holtzman MJ; Morton JD; Shornick LP; Tyner JW; O'Sullivan MP; Antao A; Lo M; Castro M; Walter MJ
    Physiol Rev; 2002 Jan; 82(1):19-46. PubMed ID: 11773608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways.
    Roscioli E; Hamon R; Lester S; Murgia C; Grant J; Zalewski P
    Biometals; 2013 Apr; 26(2):205-27. PubMed ID: 23460081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmented epithelial endothelin-1 expression in refractory asthma.
    Pégorier S; Arouche N; Dombret MC; Aubier M; Pretolani M
    J Allergy Clin Immunol; 2007 Dec; 120(6):1301-7. PubMed ID: 17996929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The airway epithelium as regulator of inflammation patterns in asthma.
    Erjefält JS
    Clin Respir J; 2010 May; 4 Suppl 1():9-14. PubMed ID: 20500604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inflammation, genes and zinc in ageing and age-related diseases.
    Vasto S; Mocchegiani E; Candore G; Listì F; Colonna-Romano G; Lio D; Malavolta M; Giacconi R; Cipriano C; Caruso C
    Biogerontology; 2006; 7(5-6):315-27. PubMed ID: 16972155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innate immune mechanisms linking non-esterified fatty acids and respiratory disease.
    Wood LG; Scott HA; Garg ML; Gibson PG
    Prog Lipid Res; 2009 Jan; 48(1):27-43. PubMed ID: 19017534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucocorticoid actions on airway epithelial responses in immunity: functional outcomes and molecular targets.
    Stellato C
    J Allergy Clin Immunol; 2007 Dec; 120(6):1247-63; quiz 1264-5. PubMed ID: 18073120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic inflammatory airway diseases: the central role of the epithelium revisited.
    Gohy ST; Hupin C; Pilette C; Ladjemi MZ
    Clin Exp Allergy; 2016 Apr; 46(4):529-42. PubMed ID: 27021118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of respiratory inflammation in children.
    Prescott SL
    Paediatr Respir Rev; 2006 Jun; 7(2):89-96. PubMed ID: 16765293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation.
    Bove PF; van der Vliet A
    Free Radic Biol Med; 2006 Aug; 41(4):515-27. PubMed ID: 16863984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airway remodeling contributes to the progressive loss of lung function in asthma: an overview.
    Pascual RM; Peters SP
    J Allergy Clin Immunol; 2005 Sep; 116(3):477-86; quiz 487. PubMed ID: 16159612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eosinophilic airway disorders.
    Scott KA; Wardlaw AJ
    Semin Respir Crit Care Med; 2006 Apr; 27(2):128-33. PubMed ID: 16612763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc and its specific transporters as potential targets in airway disease.
    Murgia C; Lang CJ; Truong-Tran AQ; Grosser D; Jayaram L; Ruffin RE; Perozzi G; Zalewski PD
    Curr Drug Targets; 2006 May; 7(5):607-627. PubMed ID: 16719771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repressor of GATA regulates TH2-driven allergic airway inflammation and airway hyperresponsiveness.
    Hirahara K; Yamashita M; Iwamura C; Shinoda K; Hasegawa A; Yoshizawa H; Koseki H; Gejyo F; Nakayama T
    J Allergy Clin Immunol; 2008 Sep; 122(3):512-20.e11. PubMed ID: 18620745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucocorticoid receptor in human respiratory epithelial cells.
    Pujolsa L; Mullol J; Picado C
    Neuroimmunomodulation; 2009; 16(5):290-9. PubMed ID: 19571590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Th2 cell differentiation and allergen-induced airway inflammation in Zfp35-deficient mice.
    Kitajima M; Iwamura C; Miki-Hosokawa T; Shinoda K; Endo Y; Watanabe Y; Shinnakasu R; Hosokawa H; Hashimoto K; Motohashi S; Koseki H; Ohara O; Yamashita M; Nakayama T
    J Immunol; 2009 Oct; 183(8):5388-96. PubMed ID: 19783676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.