These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 15670959)
1. The function of the amino terminal domain in NMDA receptor modulation. Huggins DJ; Grant GH J Mol Graph Model; 2005 Jan; 23(4):381-8. PubMed ID: 15670959 [TBL] [Abstract][Full Text] [Related]
2. An acidic amino acid in the N-methyl-D-aspartate receptor that is important for spermine stimulation. Williams K; Kashiwagi K; Fukuchi J; Igarashi K Mol Pharmacol; 1995 Dec; 48(6):1087-98. PubMed ID: 8848009 [TBL] [Abstract][Full Text] [Related]
3. Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Chen PE; Geballe MT; Stansfeld PJ; Johnston AR; Yuan H; Jacob AL; Snyder JP; Traynelis SF; Wyllie DJ Mol Pharmacol; 2005 May; 67(5):1470-84. PubMed ID: 15703381 [TBL] [Abstract][Full Text] [Related]
4. Homology modeling of NR2B modulatory domain of NMDA receptor and analysis of ifenprodil binding. Marinelli L; Cosconati S; Steinbrecher T; Limongelli V; Bertamino A; Novellino E; Case DA ChemMedChem; 2007 Oct; 2(10):1498-510. PubMed ID: 17849398 [TBL] [Abstract][Full Text] [Related]
5. An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons. Kashiwagi K; Fukuchi J; Chao J; Igarashi K; Williams K Mol Pharmacol; 1996 Jun; 49(6):1131-41. PubMed ID: 8649353 [TBL] [Abstract][Full Text] [Related]
6. Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Zheng F; Erreger K; Low CM; Banke T; Lee CJ; Conn PJ; Traynelis SF Nat Neurosci; 2001 Sep; 4(9):894-901. PubMed ID: 11528420 [TBL] [Abstract][Full Text] [Related]
7. Structural basis of NR2B-selective antagonist recognition by N-methyl-D-aspartate receptors. Mony L; Krzaczkowski L; Leonetti M; Le Goff A; Alarcon K; Neyton J; Bertrand HO; Acher F; Paoletti P Mol Pharmacol; 2009 Jan; 75(1):60-74. PubMed ID: 18923063 [TBL] [Abstract][Full Text] [Related]
8. Model structures of the N-methyl-D-aspartate receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands. Moretti L; Pentikäinen OT; Settimo L; Johnson MS J Struct Biol; 2004 Mar; 145(3):205-15. PubMed ID: 14960371 [TBL] [Abstract][Full Text] [Related]
9. Use of trifluoroperazine isolates a [(3)H]Ifenprodil binding site in rat brain membranes with the pharmacology of the voltage-independent ifenprodil site on N-methyl-D-aspartate receptors containing NR2B subunits. Coughenour LL; Barr BM J Pharmacol Exp Ther; 2001 Jan; 296(1):150-9. PubMed ID: 11123375 [TBL] [Abstract][Full Text] [Related]
10. Delineation of additional PSD-95 binding domains within NMDA receptor NR2 subunits reveals differences between NR2A/PSD-95 and NR2B/PSD-95 association. Cousins SL; Kenny AV; Stephenson FA Neuroscience; 2009 Jan; 158(1):89-95. PubMed ID: 18308477 [TBL] [Abstract][Full Text] [Related]
11. Development of a three-dimensional model for the N-methyl-D-aspartate NR2A subunit. Grazioso G; Moretti L; Scapozza L; De Amici M; De Micheli C J Med Chem; 2005 Aug; 48(17):5489-94. PubMed ID: 16107147 [TBL] [Abstract][Full Text] [Related]
12. Molecular determinants of ligand discrimination in the glutamate-binding pocket of the NMDA receptor. Laube B; Schemm R; Betz H Neuropharmacology; 2004 Dec; 47(7):994-1007. PubMed ID: 15555634 [TBL] [Abstract][Full Text] [Related]
13. Identification of critical residues in the amino terminal domain of the human NR2B subunit involved in the RO 25-6981 binding pocket. Malherbe P; Mutel V; Broger C; Perin-Dureau F; Kemp JA; Neyton J; Paoletti P; Kew JN J Pharmacol Exp Ther; 2003 Dec; 307(3):897-905. PubMed ID: 14534359 [TBL] [Abstract][Full Text] [Related]
14. Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. Erreger K; Traynelis SF J Physiol; 2005 Dec; 569(Pt 2):381-93. PubMed ID: 16166158 [TBL] [Abstract][Full Text] [Related]
15. A regulatory domain (R1-R2) in the amino terminus of the N-methyl-D-aspartate receptor: effects of spermine, protons, and ifenprodil, and structural similarity to bacterial leucine/isoleucine/valine binding protein. Masuko T; Kashiwagi K; Kuno T; Nguyen ND; Pahk AJ; Fukuchi J; Igarashi K; Williams K Mol Pharmacol; 1999 Jun; 55(6):957-69. PubMed ID: 10347236 [TBL] [Abstract][Full Text] [Related]
16. Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Hatton CJ; Paoletti P Neuron; 2005 Apr; 46(2):261-74. PubMed ID: 15848804 [TBL] [Abstract][Full Text] [Related]
17. Subunit arrangement and function in NMDA receptors. Furukawa H; Singh SK; Mancusso R; Gouaux E Nature; 2005 Nov; 438(7065):185-92. PubMed ID: 16281028 [TBL] [Abstract][Full Text] [Related]
18. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Dickinson R; Peterson BK; Banks P; Simillis C; Martin JC; Valenzuela CA; Maze M; Franks NP Anesthesiology; 2007 Nov; 107(5):756-67. PubMed ID: 18073551 [TBL] [Abstract][Full Text] [Related]
19. Protein kinase C enhances glycine-insensitive desensitization of NMDA receptors independently of previously identified protein kinase C sites. Jackson MF; Konarski JZ; Weerapura M; Czerwinski W; MacDonald JF J Neurochem; 2006 Mar; 96(6):1509-18. PubMed ID: 16417568 [TBL] [Abstract][Full Text] [Related]
20. Molecular determinants of proton-sensitive N-methyl-D-aspartate receptor gating. Low CM; Lyuboslavsky P; French A; Le P; Wyatte K; Thiel WH; Marchan EM; Igarashi K; Kashiwagi K; Gernert K; Williams K; Traynelis SF; Zheng F Mol Pharmacol; 2003 Jun; 63(6):1212-22. PubMed ID: 12761330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]