These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15671015)

  • 1. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA).
    Zhu H; Shuman S
    J Biol Chem; 2005 Apr; 280(13):12137-44. PubMed ID: 15671015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).
    Wang LK; Zhu H; Shuman S
    J Biol Chem; 2009 Mar; 284(13):8486-94. PubMed ID: 19150981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase.
    Wang LK; Nair PA; Shuman S
    J Biol Chem; 2008 Aug; 283(34):23343-52. PubMed ID: 18515356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of bacteriophage T4 RNA ligase 1. Different functional groups are required for the nucleotidyl transfer and phosphodiester bond formation steps of the ligation reaction.
    Wang LK; Ho CK; Pei Y; Shuman S
    J Biol Chem; 2003 Aug; 278(32):29454-62. PubMed ID: 12766156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+.
    Sriskanda V; Shuman S
    J Biol Chem; 2002 Mar; 277(12):9695-700. PubMed ID: 11781321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nucleotidyl transferase motif V in strand joining by chlorella virus DNA ligase.
    Sriskanda V; Shuman S
    J Biol Chem; 2002 Mar; 277(12):9661-7. PubMed ID: 11751916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.
    Samai P; Shuman S
    J Biol Chem; 2011 Jun; 286(25):22642-52. PubMed ID: 21527793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of ligation and DNA binding by Escherichia coli DNA ligase (LigA).
    Wilkinson A; Smith A; Bullard D; Lavesa-Curto M; Sayer H; Bonner A; Hemmings A; Bowater R
    Biochim Biophys Acta; 2005 May; 1749(1):113-22. PubMed ID: 15848142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD+-dependent DNA ligase encoded by a eukaryotic virus.
    Sriskanda V; Moyer RW; Shuman S
    J Biol Chem; 2001 Sep; 276(39):36100-9. PubMed ID: 11459847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase.
    Samai P; Shuman S
    J Biol Chem; 2011 Apr; 286(15):13314-26. PubMed ID: 21335605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and functional characterization of an NAD(+)-dependent DNA ligase from Staphylococcus aureus.
    Kaczmarek FS; Zaniewski RP; Gootz TD; Danley DE; Mansour MN; Griffor M; Kamath AV; Cronan M; Mueller J; Sun D; Martin PK; Benton B; McDowell L; Biek D; Schmid MB
    J Bacteriol; 2001 May; 183(10):3016-24. PubMed ID: 11325928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A second NAD(+)-dependent DNA ligase (LigB) in Escherichia coli.
    Sriskanda V; Shuman S
    Nucleic Acids Res; 2001 Dec; 29(24):4930-4. PubMed ID: 11812821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of mimivirus NAD+-dependent DNA ligase.
    Benarroch D; Shuman S
    Virology; 2006 Sep; 353(1):133-43. PubMed ID: 16844179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD
    Unciuleac MC; Goldgur Y; Shuman S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2592-2597. PubMed ID: 28223499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of Escherichia coli DNA ligase identifies amino acids required for nick-ligation in vitro and for in vivo complementation of the growth of yeast cells deleted for CDC9 and LIG4.
    Sriskanda V; Schwer B; Ho CK; Shuman S
    Nucleic Acids Res; 1999 Oct; 27(20):3953-63. PubMed ID: 10497258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of nucleotidyltransferase motifs I, III and IV in the catalysis of phosphodiester bond formation by Chlorella virus DNA ligase.
    Sriskanda V; Shuman S
    Nucleic Acids Res; 2002 Feb; 30(4):903-11. PubMed ID: 11842101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Last stop on the road to repair: structure of E. coli DNA ligase bound to nicked DNA-adenylate.
    Nandakumar J; Nair PA; Shuman S
    Mol Cell; 2007 Apr; 26(2):257-71. PubMed ID: 17466627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.
    Nakanishi Y; Saijo T; Wada Y; Maeshima M
    J Biol Chem; 2001 Mar; 276(10):7654-60. PubMed ID: 11113147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of essential residues in Thermus thermophilus DNA ligase.
    Luo J; Barany F
    Nucleic Acids Res; 1996 Aug; 24(15):3079-85. PubMed ID: 8760897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis.
    Singh V; Somvanshi P
    Protein Pept Lett; 2010 Feb; 17(2):269-76. PubMed ID: 20214650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.