These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 15671027)
1. Heat shock protein 90 stabilization of ErbB2 expression is disrupted by ATP depletion in myocytes. Peng X; Guo X; Borkan SC; Bharti A; Kuramochi Y; Calderwood S; Sawyer DB J Biol Chem; 2005 Apr; 280(13):13148-52. PubMed ID: 15671027 [TBL] [Abstract][Full Text] [Related]
2. Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Xu W; Yuan X; Xiang Z; Mimnaugh E; Marcu M; Neckers L Nat Struct Mol Biol; 2005 Feb; 12(2):120-6. PubMed ID: 15643424 [TBL] [Abstract][Full Text] [Related]
3. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. Grenert JP; Sullivan WP; Fadden P; Haystead TA; Clark J; Mimnaugh E; Krutzsch H; Ochel HJ; Schulte TW; Sausville E; Neckers LM; Toft DO J Biol Chem; 1997 Sep; 272(38):23843-50. PubMed ID: 9295332 [TBL] [Abstract][Full Text] [Related]
4. ErbB2 degradation mediated by the co-chaperone protein CHIP. Zhou P; Fernandes N; Dodge IL; Reddi AL; Rao N; Safran H; DiPetrillo TA; Wazer DE; Band V; Band H J Biol Chem; 2003 Apr; 278(16):13829-37. PubMed ID: 12574167 [TBL] [Abstract][Full Text] [Related]
5. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. Xu W; Mimnaugh E; Rosser MF; Nicchitta C; Marcu M; Yarden Y; Neckers L J Biol Chem; 2001 Feb; 276(5):3702-8. PubMed ID: 11071886 [TBL] [Abstract][Full Text] [Related]
7. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. Obermann WM; Sondermann H; Russo AA; Pavletich NP; Hartl FU J Cell Biol; 1998 Nov; 143(4):901-10. PubMed ID: 9817749 [TBL] [Abstract][Full Text] [Related]
8. Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. Young JC; Hartl FU EMBO J; 2000 Nov; 19(21):5930-40. PubMed ID: 11060043 [TBL] [Abstract][Full Text] [Related]
9. [Molecular chaperone HSP90 as a novel target for cancer chemotherapy]. Miyata Y Nihon Yakurigaku Zasshi; 2003 Jan; 121(1):33-42. PubMed ID: 12617036 [TBL] [Abstract][Full Text] [Related]
10. The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells. Xu W; Yuan X; Jung YJ; Yang Y; Basso A; Rosen N; Chung EJ; Trepel J; Neckers L Cancer Res; 2003 Nov; 63(22):7777-84. PubMed ID: 14633703 [TBL] [Abstract][Full Text] [Related]
11. Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury. Gabrielson K; Bedja D; Pin S; Tsao A; Gama L; Yuan B; Muratore N Cancer Res; 2007 Feb; 67(4):1436-41. PubMed ID: 17308081 [TBL] [Abstract][Full Text] [Related]
12. The charged region of Hsp90 modulates the function of the N-terminal domain. Scheibel T; Siegmund HI; Jaenicke R; Ganz P; Lilie H; Buchner J Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1297-302. PubMed ID: 9990018 [TBL] [Abstract][Full Text] [Related]
13. Heat-shock factor-1, steroid hormones, and regulation of heat-shock protein expression in the heart. Knowlton AA; Sun L Am J Physiol Heart Circ Physiol; 2001 Jan; 280(1):H455-64. PubMed ID: 11123263 [TBL] [Abstract][Full Text] [Related]
14. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Prodromou C; Roe SM; O'Brien R; Ladbury JE; Piper PW; Pearl LH Cell; 1997 Jul; 90(1):65-75. PubMed ID: 9230303 [TBL] [Abstract][Full Text] [Related]
15. Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Yun BG; Matts RL Exp Cell Res; 2005 Jul; 307(1):212-23. PubMed ID: 15922741 [TBL] [Abstract][Full Text] [Related]
16. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. Söti C; Rácz A; Csermely P J Biol Chem; 2002 Mar; 277(9):7066-75. PubMed ID: 11751878 [TBL] [Abstract][Full Text] [Related]
17. Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Schulte TW; Akinaga S; Soga S; Sullivan W; Stensgard B; Toft D; Neckers LM Cell Stress Chaperones; 1998 Jun; 3(2):100-8. PubMed ID: 9672245 [TBL] [Abstract][Full Text] [Related]
19. Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Xu W; Mimnaugh EG; Kim JS; Trepel JB; Neckers LM Cell Stress Chaperones; 2002 Jan; 7(1):91-6. PubMed ID: 11892991 [TBL] [Abstract][Full Text] [Related]
20. Flotillin depletion affects ErbB protein levels in different human breast cancer cells. Asp N; Pust S; Sandvig K Biochim Biophys Acta; 2014 Sep; 1843(9):1987-96. PubMed ID: 24747692 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]