These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Bone-marrow-derived cell differentiation into microglia: a study in a progressive mouse model of Parkinson's disease. Rodriguez M; Alvarez-Erviti L; Blesa FJ; Rodríguez-Oroz MC; Arina A; Melero I; Ramos LI; Obeso JA Neurobiol Dis; 2007 Dec; 28(3):316-25. PubMed ID: 17897835 [TBL] [Abstract][Full Text] [Related]
3. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. Corti S; Locatelli F; Donadoni C; Strazzer S; Salani S; Del Bo R; Caccialanza M; Bresolin N; Scarlato G; Comi GP J Neurosci Res; 2002 Dec; 70(6):721-33. PubMed ID: 12444594 [TBL] [Abstract][Full Text] [Related]
4. PD-L1 (B7-H1) regulation in zones of axonal degeneration. Lipp M; Brandt C; Dehghani F; Kwidzinski E; Bechmann I Neurosci Lett; 2007 Oct; 425(3):156-61. PubMed ID: 17825988 [TBL] [Abstract][Full Text] [Related]
5. Hematopoietic origin of microglial and perivascular cells in brain. Hess DC; Abe T; Hill WD; Studdard AM; Carothers J; Masuya M; Fleming PA; Drake CJ; Ogawa M Exp Neurol; 2004 Apr; 186(2):134-44. PubMed ID: 15026252 [TBL] [Abstract][Full Text] [Related]
6. Bone marrow-derived cells expressing green fluorescent protein under the control of the glial fibrillary acidic protein promoter do not differentiate into astrocytes in vitro and in vivo. Wehner T; Böntert M; Eyüpoglu I; Prass K; Prinz M; Klett FF; Heinze M; Bechmann I; Nitsch R; Kirchhoff F; Kettenmann H; Dirnagl U; Priller J J Neurosci; 2003 Jun; 23(12):5004-11. PubMed ID: 12832523 [TBL] [Abstract][Full Text] [Related]
7. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. Beck H; Voswinckel R; Wagner S; Ziegelhoeffer T; Heil M; Helisch A; Schaper W; Acker T; Hatzopoulos AK; Plate KH J Cereb Blood Flow Metab; 2003 Jun; 23(6):709-17. PubMed ID: 12796719 [TBL] [Abstract][Full Text] [Related]
8. Chronic foot-shock stress potentiates the influx of bone marrow-derived microglia into hippocampus. Brevet M; Kojima H; Asakawa A; Atsuchi K; Ushikai M; Ataka K; Inui A; Kimura H; Sevestre H; Fujimiya M J Neurosci Res; 2010 Jul; 88(9):1890-7. PubMed ID: 20155811 [TBL] [Abstract][Full Text] [Related]
9. Morphological and immunophenotypic microglial changes in the denervated fascia dentata of adult rats: correlation with blood-brain barrier damage and astroglial reactions. Jensen MB; Finsen B; Zimmer J Exp Neurol; 1997 Jan; 143(1):103-16. PubMed ID: 9000449 [TBL] [Abstract][Full Text] [Related]
10. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. Simard AR; Rivest S FASEB J; 2004 Jun; 18(9):998-1000. PubMed ID: 15084516 [TBL] [Abstract][Full Text] [Related]
11. Conditions of retinal glial and inflammatory cell activation after irradiation in a GFP-chimeric mouse model. Müther PS; Semkova I; Schmidt K; Abari E; Kuebbeler M; Beyer M; Abken H; Meyer KL; Kociok N; Joussen AM Invest Ophthalmol Vis Sci; 2010 Sep; 51(9):4831-9. PubMed ID: 20435601 [TBL] [Abstract][Full Text] [Related]
12. Reactive microgliosis engages distinct responses by microglial subpopulations after minor central nervous system injury. Wirenfeldt M; Babcock AA; Ladeby R; Lambertsen KL; Dagnaes-Hansen F; Leslie RG; Owens T; Finsen B J Neurosci Res; 2005 Nov; 82(4):507-14. PubMed ID: 16237722 [TBL] [Abstract][Full Text] [Related]
13. Astroglial ciliary neurotrophic factor mRNA expression is increased in fields of axonal sprouting in deafferented hippocampus. Guthrie KM; Woods AG; Nguyen T; Gall CM J Comp Neurol; 1997 Sep; 386(1):137-48. PubMed ID: 9303530 [TBL] [Abstract][Full Text] [Related]
14. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Simard AR; Soulet D; Gowing G; Julien JP; Rivest S Neuron; 2006 Feb; 49(4):489-502. PubMed ID: 16476660 [TBL] [Abstract][Full Text] [Related]
15. Bone marrow contributes simultaneously to different neural types in the central nervous system through different mechanisms of plasticity. Recio JS; Álvarez-Dolado M; Díaz D; Baltanás FC; Piquer-Gil M; Alonso JR; Weruaga E Cell Transplant; 2011; 20(8):1179-92. PubMed ID: 21294954 [TBL] [Abstract][Full Text] [Related]
16. BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury. Lu P; Jones LL; Tuszynski MH Exp Neurol; 2005 Feb; 191(2):344-60. PubMed ID: 15649491 [TBL] [Abstract][Full Text] [Related]
17. Introduction of the green fluorescent protein gene into hematopoietic stem cells results in prolonged discrepancy of in vivo transduction levels between bone marrow progenitors and peripheral blood cells in nonhuman primates. Hanazono Y; Terao K; Shibata H; Nagashima T; Ageyama N; Asano T; Ueda Y; Kato I; Kume A; Hasegawa M; Ozawa K J Gene Med; 2002; 4(5):470-7. PubMed ID: 12221639 [TBL] [Abstract][Full Text] [Related]
18. Turnover of resident retinal microglia in the normal adult mouse. Xu H; Chen M; Mayer EJ; Forrester JV; Dick AD Glia; 2007 Aug; 55(11):1189-98. PubMed ID: 17600341 [TBL] [Abstract][Full Text] [Related]
19. Astrocytes and microglial cells incorporate degenerating fibers following entorhinal lesion: a light, confocal, and electron microscopical study using a phagocytosis-dependent labeling technique. Bechmann I; Nitsch R Glia; 1997 Jun; 20(2):145-54. PubMed ID: 9179599 [TBL] [Abstract][Full Text] [Related]