BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 15671177)

  • 1. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing.
    Kenniston JA; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1390-5. PubMed ID: 15671177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease.
    Shin Y; Davis JH; Brau RR; Martin A; Kenniston JA; Baker TA; Sauer RT; Lang MJ
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19340-5. PubMed ID: 19892734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistep substrate binding and engagement by the AAA+ ClpXP protease.
    Saunders RA; Stinson BM; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28005-28013. PubMed ID: 33106413
    [No Abstract]   [Full Text] [Related]  

  • 4. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes.
    Martin A; Baker TA; Sauer RT
    Nat Struct Mol Biol; 2008 Feb; 15(2):139-45. PubMed ID: 18223658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP.
    Rodriguez-Aliaga P; Ramirez L; Kim F; Bustamante C; Martin A
    Nat Struct Mol Biol; 2016 Nov; 23(11):974-981. PubMed ID: 27669037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases.
    Baytshtok V; Baker TA; Sauer RT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of protein substrate degradation by HslUV.
    Kwon AR; Trame CB; McKay DB
    J Struct Biol; 2004; 146(1-2):141-7. PubMed ID: 15037245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit.
    Too PH; Erales J; Simen JD; Marjanovic A; Coffino P
    J Biol Chem; 2013 May; 288(19):13243-57. PubMed ID: 23530043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate.
    Fei X; Bell TA; Jenni S; Stinson BM; Baker TA; Harrison SC; Sauer RT
    Elife; 2020 Feb; 9():. PubMed ID: 32108573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation.
    Kenniston JA; Burton RE; Siddiqui SM; Baker TA; Sauer RT
    J Struct Biol; 2004; 146(1-2):130-40. PubMed ID: 15037244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polypeptide translocation by the AAA+ ClpXP protease machine.
    Barkow SR; Levchenko I; Baker TA; Sauer RT
    Chem Biol; 2009 Jun; 16(6):605-12. PubMed ID: 19549599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine.
    Hersch GL; Burton RE; Bolon DN; Baker TA; Sauer RT
    Cell; 2005 Jul; 121(7):1017-27. PubMed ID: 15989952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.
    Aubin-Tam ME; Olivares AO; Sauer RT; Baker TA; Lang MJ
    Cell; 2011 Apr; 145(2):257-67. PubMed ID: 21496645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine.
    Kenniston JA; Baker TA; Fernandez JM; Sauer RT
    Cell; 2003 Aug; 114(4):511-20. PubMed ID: 12941278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slippery substrates impair ATP-dependent protease function by slowing unfolding.
    Kraut DA
    J Biol Chem; 2013 Nov; 288(48):34729-35. PubMed ID: 24151080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein unfolding and degradation by the AAA+ Lon protease.
    Gur E; Vishkautzan M; Sauer RT
    Protein Sci; 2012 Feb; 21(2):268-78. PubMed ID: 22162032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
    Maglica Z; Striebel F; Weber-Ban E
    J Mol Biol; 2008 Dec; 384(2):503-11. PubMed ID: 18835567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears.
    Sen M; Maillard RA; Nyquist K; Rodriguez-Aliaga P; Pressé S; Martin A; Bustamante C
    Cell; 2013 Oct; 155(3):636-646. PubMed ID: 24243020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP hydrolysis tunes specificity of a AAA+ protease.
    Mahmoud SA; Aldikacti B; Chien P
    Cell Rep; 2022 Sep; 40(12):111405. PubMed ID: 36130509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein knots provide mechano-resilience to an AAA+ protease-mediated proteolysis with profound ATP energy expenses.
    Sriramoju MK; Chen Y; Hsu SD
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140330. PubMed ID: 31756432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.