These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15671648)
1. QT-screen: high-throughput cardiac safety pharmacology by extracellular electrophysiology on primary cardiac myocytes. Meyer T; Leisgen C; Gonser B; Günther E Assay Drug Dev Technol; 2004 Oct; 2(5):507-14. PubMed ID: 15671648 [TBL] [Abstract][Full Text] [Related]
2. Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart. Bottino D; Penland RC; stamps A; Traebert M; Dumotier B; Georgiva A; Helmlinger G; Lett GS Prog Biophys Mol Biol; 2006; 90(1-3):414-43. PubMed ID: 16321428 [TBL] [Abstract][Full Text] [Related]
3. Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation. Guo L; Guthrie H J Pharmacol Toxicol Methods; 2005; 52(1):123-35. PubMed ID: 15936217 [TBL] [Abstract][Full Text] [Related]
4. Validation of a guinea pig Langendorff heart model for assessing potential cardiovascular liability of drug candidates. Guo L; Dong Z; Guthrie H J Pharmacol Toxicol Methods; 2009; 60(2):130-51. PubMed ID: 19616638 [TBL] [Abstract][Full Text] [Related]
5. Action potential-based MEA platform for in vitro screening of drug-induced cardiotoxicity using human iPSCs and rat neonatal myocytes. Jans D; Callewaert G; Krylychkina O; Hoffman L; Gullo F; Prodanov D; Braeken D J Pharmacol Toxicol Methods; 2017 Sep; 87():48-52. PubMed ID: 28549786 [TBL] [Abstract][Full Text] [Related]
6. Choice of cardiac tissue in vitro plays an important role in assessing the risk of drug-induced cardiac arrhythmias in human: beyond QT prolongation. Lu HR; Vlaminckx E; Gallacher DJ J Pharmacol Toxicol Methods; 2008; 57(1):1-8. PubMed ID: 17964190 [TBL] [Abstract][Full Text] [Related]
7. Assessment of extracellular field potential and Ca Abi-Gerges N; Pointon A; Oldman KL; Brown MR; Pilling MA; Sefton CE; Garside H; Pollard CE J Pharmacol Toxicol Methods; 2017; 83():1-15. PubMed ID: 27622857 [TBL] [Abstract][Full Text] [Related]
8. Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Meyer T; Boven KH; Günther E; Fejtl M Drug Saf; 2004; 27(11):763-72. PubMed ID: 15350150 [TBL] [Abstract][Full Text] [Related]
9. Specific prediction of clinical QT prolongation by kinetic image cytometry in human stem cell derived cardiomyocytes. Pfeiffer ER; Vega R; McDonough PM; Price JH; Whittaker R J Pharmacol Toxicol Methods; 2016; 81():263-73. PubMed ID: 27095424 [TBL] [Abstract][Full Text] [Related]
10. Significance of integrated in silico transmural ventricular wedge preparation models of human non-failing and failing hearts for safety evaluation of drug candidates. Kubo T; Ashihara T; Tsubouchi T; Horie M J Pharmacol Toxicol Methods; 2017; 83():30-41. PubMed ID: 27546811 [TBL] [Abstract][Full Text] [Related]
11. Safety pharmacology assessment of drug-induced QT-prolongation in dogs with reduced repolarization reserve. Vormberge T; Hoffmann M; Himmel H J Pharmacol Toxicol Methods; 2006; 54(2):130-40. PubMed ID: 16757186 [TBL] [Abstract][Full Text] [Related]
12. Availability of human induced pluripotent stem cell-derived cardiomyocytes in assessment of drug potential for QT prolongation. Nozaki Y; Honda Y; Tsujimoto S; Watanabe H; Kunimatsu T; Funabashi H Toxicol Appl Pharmacol; 2014 Jul; 278(1):72-7. PubMed ID: 24742750 [TBL] [Abstract][Full Text] [Related]
13. Inhibitory effect of erythromycin on potassium currents in rat ventricular myocytes in comparison with disopyramide. Hanada E; Ohtani H; Hirota M; Uemura N; Nakaya H; Kotaki H; Sato H; Yamada Y; Iga T J Pharm Pharmacol; 2003 Jul; 55(7):995-1002. PubMed ID: 12906757 [TBL] [Abstract][Full Text] [Related]
14. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Braam SR; Tertoolen L; van de Stolpe A; Meyer T; Passier R; Mummery CL Stem Cell Res; 2010 Mar; 4(2):107-16. PubMed ID: 20034863 [TBL] [Abstract][Full Text] [Related]
15. Pentamidine-induced long QT syndrome and block of hERG trafficking. Kuryshev YA; Ficker E; Wang L; Hawryluk P; Dennis AT; Wible BA; Brown AM; Kang J; Chen XL; Sawamura K; Reynolds W; Rampe D J Pharmacol Exp Ther; 2005 Jan; 312(1):316-23. PubMed ID: 15340016 [TBL] [Abstract][Full Text] [Related]
16. Action potential experiments complete hERG assay and QT-interval measurements in cardiac preclinical studies. Ducroq J; Printemps R; Guilbot S; Gardette J; Salvetat C; Le Grand M J Pharmacol Toxicol Methods; 2007; 56(2):159-70. PubMed ID: 17604185 [TBL] [Abstract][Full Text] [Related]
17. Functional interaction between DPI 201-106, a drug that mimics congenital long QT syndrome, and sevoflurane on the guinea-pig cardiac action potential. Kang J; Chen XL; Reynolds WP; Rampe D Clin Exp Pharmacol Physiol; 2007 Dec; 34(12):1313-6. PubMed ID: 17892500 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications. Peters MF; Scott CW; Ochalski R; Dragan YP Assay Drug Dev Technol; 2012 Dec; 10(6):525-32. PubMed ID: 22574652 [TBL] [Abstract][Full Text] [Related]
19. The fentanyl/etomidate-anaesthetised beagle (FEAB) dog: a versatile in vivo model in cardiovascular safety research. Van Deuren B; Van Ammel K; Somers Y; Cools F; Straetemans R; van der Linde HJ; Gallacher DJ J Pharmacol Toxicol Methods; 2009; 60(1):11-23. PubMed ID: 19422925 [TBL] [Abstract][Full Text] [Related]
20. Blockade of the I(Ks) potassium channel: an overlooked cardiovascular liability in drug safety screening? Towart R; Linders JT; Hermans AN; Rohrbacher J; van der Linde HJ; Ercken M; Cik M; Roevens P; Teisman A; Gallacher DJ J Pharmacol Toxicol Methods; 2009; 60(1):1-10. PubMed ID: 19439185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]