These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 1567189)

  • 1. Quantitative interpretations of double mutations of enzymes.
    Mildvan AS; Weber DJ; Kuliopulos A
    Arch Biochem Biophys; 1992 May; 294(2):327-40. PubMed ID: 1567189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse interactions between the individual mutations in a double mutant at the active site of staphylococcal nuclease.
    Weber DJ; Serpersu EH; Shortle D; Mildvan AS
    Biochemistry; 1990 Sep; 29(37):8632-42. PubMed ID: 1702994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effects of two mutations of catalytic residues on the ketosteroid isomerase reaction.
    Kuliopulos A; Talalay P; Mildvan AS
    Biochemistry; 1990 Nov; 29(44):10271-80. PubMed ID: 2271654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of the acid and base catalysts on staphylococcal nuclease as studied in a double mutant.
    Weber DJ; Meeker AK; Mildvan AS
    Biochemistry; 1991 Jun; 30(25):6103-14. PubMed ID: 1676297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse thinking about double mutants of enzymes.
    Mildvan AS
    Biochemistry; 2004 Nov; 43(46):14517-20. PubMed ID: 15544321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the mechanism of the delta 5-3-ketosteroid isomerase reaction by substrate, solvent, and combined kinetic deuterium isotope effects on wild-type and mutant enzymes.
    Xue LA; Talalay P; Mildvan AS
    Biochemistry; 1990 Aug; 29(32):7491-500. PubMed ID: 2223781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and ultraviolet spectroscopic studies of active-site mutants of delta 5-3-ketosteroid isomerase.
    Kuliopulos A; Mildvan AS; Shortle D; Talalay P
    Biochemistry; 1989 Jan; 28(1):149-59. PubMed ID: 2706241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl-tRNA synthetase: a mobile loop envelopes the transition state in an induced-fit mechanism.
    Fersht AR; Knill-Jones JW; Bedouelle H; Winter G
    Biochemistry; 1988 Mar; 27(5):1581-7. PubMed ID: 3284584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal thermodynamics of position 51 mutants and natural variants of tyrosyl-tRNA synthetase.
    Ho CK; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1891-7. PubMed ID: 3518795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of binding energy in catalysis analyzed by mutagenesis of the tyrosyl-tRNA synthetase.
    Wells TN; Fersht AR
    Biochemistry; 1986 Apr; 25(8):1881-6. PubMed ID: 3518794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site mutants of pig citrate synthase: effects of mutations on the enzyme catalytic and structural properties.
    Evans CT; Kurz LC; Remington SJ; Srere PA
    Biochemistry; 1996 Aug; 35(33):10661-72. PubMed ID: 8718855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-range, small magnitude nonadditivity of mutational effects in proteins.
    LiCata VJ; Ackers GK
    Biochemistry; 1995 Mar; 34(10):3133-9. PubMed ID: 7880807
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetic and thermodynamic properties of wild-type and engineered mutants of tyrosyl-tRNA synthetase analyzed by pyrophosphate-exchange kinetics.
    Wells TN; Knill-Jones JW; Gray TE; Fersht AR
    Biochemistry; 1991 May; 30(21):5151-6. PubMed ID: 1645192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations between kinetic and X-ray analyses of engineered enzymes: crystal structures of mutants Cys----Gly-35 and Tyr----Phe-34 of tyrosyl-tRNA synthetase.
    Fothergill MD; Fersht AR
    Biochemistry; 1991 May; 30(21):5157-64. PubMed ID: 2036381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases.
    Wells TN; Ho CK; Fersht AR
    Biochemistry; 1986 Oct; 25(21):6603-8. PubMed ID: 3466647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between trans/cis proline isomerization and protein stability in staphylococcal nuclease.
    Truckses DM; Somoza JR; Prehoda KE; Miller SC; Markley JL
    Protein Sci; 1996 Sep; 5(9):1907-16. PubMed ID: 8880915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and magnetic resonance studies of active-site mutants of staphylococcal nuclease: factors contributing to catalysis.
    Serpersu EH; Shortle D; Mildvan AS
    Biochemistry; 1987 Mar; 26(5):1289-300. PubMed ID: 3567171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of the transition state for the transfer of tyrosine to tRNA(Tyr) by tyrosyl-tRNA synthetase.
    Xin Y; Li W; First EA
    J Mol Biol; 2000 Oct; 303(2):299-310. PubMed ID: 11023794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.