These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1567192)

  • 1. Direct electrochemistry of spinach plastocyanin at a lipid bilayer-modified electrode: cyclic voltammetry as a probe of membrane-protein interactions.
    Salamon Z; Tollin G
    Arch Biochem Biophys; 1992 May; 294(2):382-7. PubMed ID: 1567192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser flash photolysis as a probe of redox protein-membrane interactions: effect of binding of spinach plastocyanin and horse cytochrome c to lipid bilayer vesicles on the kinetics of reduction by flavin semiquinone.
    Senthilathipan V; Tollin G
    Biochemistry; 1989 Feb; 28(3):1133-8. PubMed ID: 2540816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of promoter and of electrode material on the cyclic voltammetry of Pisum sativum plastocyanin.
    Johnson DL; Maxwell CJ; Losic D; Shapter JG; Martin LL
    Bioelectrochemistry; 2002 Dec; 58(2):137-47. PubMed ID: 12414319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of electron transfer kinetics between redox proteins free in solution and electrostatically complexed to a lipid bilayer membrane.
    Cheddar G; Tollin G
    Arch Biochem Biophys; 1994 May; 310(2):392-6. PubMed ID: 8179324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of horse heart cytochrome c with lipid bilayer membranes: effects on redox potentials.
    Salamon Z; Tollin G
    J Bioenerg Biomembr; 1997 Jun; 29(3):211-21. PubMed ID: 9298706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron transfer reactions of chemically modified plastocyanin with P700 and cytochrome f. Importance of local charges.
    Takabe T; Ishikawa H; Niwa S; Tanaka Y
    J Biochem; 1984 Aug; 96(2):385-93. PubMed ID: 6501248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox- and pH-dependent association of plastocyanin with lipid bilayers: effect on protein conformation and thermal stability.
    Taneva SG; Donchev AA; Dimitrov MI; Muga A
    Biochim Biophys Acta; 2000 Feb; 1463(2):429-38. PubMed ID: 10675519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for fast and discriminatory electron transfer of proteins at modified gold electrodes.
    Bond AM; Hill HA; Page DJ; Psalti IS; Walton NJ
    Eur J Biochem; 1990 Aug; 191(3):737-42. PubMed ID: 2167852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enforced interaction of one molecule of plastocyanin with two molecules of cytochrome c and an electron-transfer reaction involving the hydrophobic patch on the plastocyanin surface.
    Qin L; Kostić NM
    Biochemistry; 1996 Mar; 35(11):3379-86. PubMed ID: 8639487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule study of redox control involved in establishing the spinach plastocyanin-cytochrome b
    Mayneord GE; Vasilev C; Malone LA; Swainsbury DJK; Hunter CN; Johnson MP
    Biochim Biophys Acta Bioenerg; 2019 Jul; 1860(7):591-599. PubMed ID: 31247170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled plasmon-waveguide resonance spectroscopy studies of the cytochrome b6f/plastocyanin system in supported lipid bilayer membranes.
    Salamon Z; Huang D; Cramer WA; Tollin G
    Biophys J; 1998 Oct; 75(4):1874-85. PubMed ID: 9746528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin.
    Meyer TE; Zhao ZG; Cusanovich MA; Tollin G
    Biochemistry; 1993 May; 32(17):4552-9. PubMed ID: 8387337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox potential and electrostatic effects in competitive inhibition of dual-path electron transfer reactions of spinach plastocyanin.
    Christensen HE; Conrad LS; Ulstrup J
    Arch Biochem Biophys; 1993 Mar; 301(2):385-90. PubMed ID: 8460947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo.
    Soriano GM; Ponamarev MV; Piskorowski RA; Cramer WA
    Biochemistry; 1998 Oct; 37(43):15120-8. PubMed ID: 9790675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrochemistry of thioredoxins and glutathione at a lipid bilayer-modified electrode.
    Salamon Z; Gleason FK; Tollin G
    Arch Biochem Biophys; 1992 Nov; 299(1):193-8. PubMed ID: 1444449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic effects on the kinetics of electron transfer reactions of cytochrome c caused by binding to negatively charged lipid bilayer vesicles.
    Cheddar G; Tollin G
    Arch Biochem Biophys; 1991 Apr; 286(1):201-6. PubMed ID: 1654779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltammetry of Plastocyanin at a Graphite Electrode: Effects of Structure, Charge, and Electrolyte.
    Niles McLeod DD; Freeman HC; Harvey I; Lay PA; Bond AM
    Inorg Chem; 1996 Nov; 35(24):7156-7165. PubMed ID: 11666900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of local positive charges on cytochrome f for electron transfer to plastocyanin and potassium ferricyanide.
    Takenaka K; Takabe T
    J Biochem; 1984 Dec; 96(6):1813-21. PubMed ID: 6530399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformation change of horseradish peroxidase in lipid membrane.
    Tang J; Jiang J; Song Y; Peng Z; Wu Z; Dong S; Wang E
    Chem Phys Lipids; 2002 Dec; 120(1-2):119-29. PubMed ID: 12426081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding dynamics and electron transfer between plastocyanin and photosystem I.
    Drepper F; Hippler M; Nitschke W; Haehnel W
    Biochemistry; 1996 Jan; 35(4):1282-95. PubMed ID: 8573585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.