These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 1567197)
1. Calorimetry of tetraether lipids from Thermoplasma acidophilum: incorporation of alamethicin, melittin, valinomycin, and nonactin. Freisleben HJ; Blöcher D; Ring K Arch Biochem Biophys; 1992 May; 294(2):418-26. PubMed ID: 1567197 [TBL] [Abstract][Full Text] [Related]
2. Incorporation of synthetic peptide helices in membranes of tetraether lipids from Thermoplasma acidophilum. A calorimetric study. Blöcher D; Freisleben HJ; Becker G; Jung G; Ring K Biochim Biophys Acta; 1991 Jun; 1065(2):160-6. PubMed ID: 2059650 [TBL] [Abstract][Full Text] [Related]
3. A molecular dynamics study of an archaeal tetraether lipid membrane: comparison with a dipalmitoylphosphatidylcholine lipid bilayer. Nicolas JP Lipids; 2005 Oct; 40(10):1023-30. PubMed ID: 16382574 [TBL] [Abstract][Full Text] [Related]
4. Thermotropic properties of dispersions of cholesterol with tetraether lipids from Thermoplasma acidophilum. Blöcher D; Freisleben HJ; Ring K Arch Biochem Biophys; 1991 Oct; 290(1):224-8. PubMed ID: 1898093 [TBL] [Abstract][Full Text] [Related]
5. Black lipid membranes of tetraether lipids from Thermoplasma acidophilum. Stern J; Freisleben HJ; Janku S; Ring K Biochim Biophys Acta; 1992 Oct; 1128(2-3):227-36. PubMed ID: 1420295 [TBL] [Abstract][Full Text] [Related]
6. The Main (Glyco) Phospholipid (MPL) of Freisleben HJ Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31640225 [TBL] [Abstract][Full Text] [Related]
7. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Freisleben HJ; Zwicker K; Jezek P; John G; Bettin-Bogutzki A; Ring K; Nawroth T Chem Phys Lipids; 1995 Nov; 78(2):137-47. PubMed ID: 8565113 [TBL] [Abstract][Full Text] [Related]
8. Defect formation of lytic peptides in lipid membranes and their influence on the thermodynamic properties of the pore environment. Oliynyk V; Kaatze U; Heimburg T Biochim Biophys Acta; 2007 Feb; 1768(2):236-45. PubMed ID: 17141732 [TBL] [Abstract][Full Text] [Related]
10. Effects of a squalene epoxidase inhibitor, terbinafine, on ether lipid biosyntheses in a thermoacidophilic archaeon, Thermoplasma acidophilum. Kon T; Nemoto N; Oshima T; Yamagishi A J Bacteriol; 2002 Mar; 184(5):1395-401. PubMed ID: 11844769 [TBL] [Abstract][Full Text] [Related]
11. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the precursor of tetraether lipid biosynthesis in the thermoacidophilic archaeon Thermoplasma acidophilum. Nemoto N; Shida Y; Shimada H; Oshima T; Yamagishi A Extremophiles; 2003 Jun; 7(3):235-43. PubMed ID: 12768455 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Vogel H Biochemistry; 1987 Jul; 26(14):4562-72. PubMed ID: 3663608 [TBL] [Abstract][Full Text] [Related]
14. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. Bechinger B J Membr Biol; 1997 Apr; 156(3):197-211. PubMed ID: 9096062 [No Abstract] [Full Text] [Related]
15. Phosphatidic acid regulates the activity of the channel-forming ionophores alamethicin, melittin, and nystatin: a 1H-NMR study using phospholipid membranes. Hunt GR; Jones IC; Veiro JA Biosci Rep; 1984 May; 4(5):403-13. PubMed ID: 6329354 [TBL] [Abstract][Full Text] [Related]
16. Monomolecular organization of the main tetraether lipid from Thermoplasma acidophilum at the water-air interface. Bakowsky U; Rothe U; Antonopoulos E; Martini T; Henkel L; Freisleben HJ Chem Phys Lipids; 2000 Mar; 105(1):31-42. PubMed ID: 10727112 [TBL] [Abstract][Full Text] [Related]
17. Effect of α-helical peptides on liposome structure: a comparative study of melittin and alamethicin. Wessman P; Morin M; Reijmar K; Edwards K J Colloid Interface Sci; 2010 Jun; 346(1):127-35. PubMed ID: 20226468 [TBL] [Abstract][Full Text] [Related]
18. Effect of cholesterol on the polymorphism of dipalmitoylphosphatidylcholine/melittin complexes: an NMR study. Monette M; Van Calsteren MR; Lafleur M Biochim Biophys Acta; 1993 Jul; 1149(2):319-28. PubMed ID: 8323950 [TBL] [Abstract][Full Text] [Related]
19. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures. Angelova A; Ionov R; Koch MH; Rapp G Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049 [TBL] [Abstract][Full Text] [Related]
20. A high-sensitivity differential scanning calorimetric study of the interaction of melittin with dipalmitoylphosphatidylcholine fused unilamellar vesicles. Bradrick TD; Freire E; Georghiou S Biochim Biophys Acta; 1989 Jun; 982(1):94-102. PubMed ID: 2472839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]