BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 15672094)

  • 1. Setting the stage for functional repair of spinal cord injuries: a cast of thousands.
    Ramer LM; Ramer MS; Steeves JD
    Spinal Cord; 2005 Mar; 43(3):134-61. PubMed ID: 15672094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is funding for rehabilitation research sufficient to prepare for the promised 'breakthrough' in SCI functional repair?
    Allison GT
    Spinal Cord; 2005 Dec; 43(12):746. PubMed ID: 16010270
    [No Abstract]   [Full Text] [Related]  

  • 3. Cell-based transplantation strategies to promote plasticity following spinal cord injury.
    Ruff CA; Wilcox JT; Fehlings MG
    Exp Neurol; 2012 May; 235(1):78-90. PubMed ID: 21333647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies to restore motor functions after spinal cord injury.
    Boulenguez P; Vinay L
    Curr Opin Neurobiol; 2009 Dec; 19(6):587-600. PubMed ID: 19896827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rehabilitative training and plasticity following spinal cord injury.
    Fouad K; Tetzlaff W
    Exp Neurol; 2012 May; 235(1):91-9. PubMed ID: 21333646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A clinical perspective of spinal cord injury.
    Nandoe Tewarie RD; Hurtado A; Bartels RH; Grotenhuis JA; Oudega M
    NeuroRehabilitation; 2010; 27(2):129-39. PubMed ID: 20871142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal repair and replacement in spinal cord injury.
    Bareyre FM
    J Neurol Sci; 2008 Feb; 265(1-2):63-72. PubMed ID: 17568612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoring function after spinal cord injury: promoting spontaneous regeneration with stem cells and activity-based therapies.
    Belegu V; Oudega M; Gary DS; McDonald JW
    Neurosurg Clin N Am; 2007 Jan; 18(1):143-68, xi. PubMed ID: 17244561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration of descending axon tracts after spinal cord injury.
    Deumens R; Koopmans GC; Joosten EA
    Prog Neurobiol; 2005; 77(1-2):57-89. PubMed ID: 16271433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved functional recovery with oxandrolone after spinal cord injury in rats.
    Zeman RJ; Bauman WA; Wen X; Ouyang N; Etlinger JD; Cardozo CP
    Neuroreport; 2009 Jun; 20(9):864-8. PubMed ID: 19424096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets.
    Yamane J; Nakamura M; Iwanami A; Sakaguchi M; Katoh H; Yamada M; Momoshima S; Miyao S; Ishii K; Tamaoki N; Nomura T; Okano HJ; Kanemura Y; Toyama Y; Okano H
    J Neurosci Res; 2010 May; 88(7):1394-405. PubMed ID: 20091712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to promote regeneration and recovery in the injured spinal cord.
    Kliot M; Lustgarten JH
    Neurosurg Clin N Am; 1990 Jul; 1(3):751-9. PubMed ID: 2136167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current and future therapeutic strategies for functional repair of spinal cord injury.
    Tohda C; Kuboyama T
    Pharmacol Ther; 2011 Oct; 132(1):57-71. PubMed ID: 21640756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of quantitative and sensitive assessments of physiological and functional outcome during recovery from spinal cord injury: a clinical initiative.
    Ellaway PH; Kuppuswamy A; Balasubramaniam AV; Maksimovic R; Gall A; Craggs MD; Mathias CJ; Bacon M; Prochazka A; Kowalczewski J; Conway BA; Galen S; Catton CJ; Allan DB; Curt A; Wirth B; van Hedel HJ
    Brain Res Bull; 2011 Mar; 84(4-5):343-57. PubMed ID: 20728509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of published reports on neuroprotection in spinal cord injury.
    Onose G; Anghelescu A; Muresanu DF; Padure L; Haras MA; Chendreanu CO; Onose LV; Mirea A; Ciurea AV; El Masri WS; von Wild KR
    Spinal Cord; 2009 Oct; 47(10):716-26. PubMed ID: 19597522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury.
    Pannu R; Christie DK; Barbosa E; Singh I; Singh AK
    J Neurochem; 2007 Apr; 101(1):182-200. PubMed ID: 17217414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory ensheathing cells for human spinal cord injury.
    Lopes A
    Neurorehabil Neural Repair; 2010 Oct; 24(8):772-3; author reply 772-3. PubMed ID: 20936775
    [No Abstract]   [Full Text] [Related]  

  • 19. Olfactory ensheathing cells for human spinal cord injury.
    de Carvalho M
    Neurorehabil Neural Repair; 2010 Oct; 24(8):772; author reply 772. PubMed ID: 20936774
    [No Abstract]   [Full Text] [Related]  

  • 20. Olfactory ensheathing cells for human spinal cord injury.
    Wernig A; Wernig S
    Neurorehabil Neural Repair; 2010 Oct; 24(8):770-2; author reply 770-2. PubMed ID: 20921330
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.