BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 15672094)

  • 21. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model.
    Bonnici B; Kapfhammer JP
    Eur J Neurosci; 2008 May; 27(10):2483-92. PubMed ID: 18513321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repair therapies in spinal cord injuries.
    Tederko P; Krasuski M; Kiwerski J; Nyka I; Białoszewski D
    Ortop Traumatol Rehabil; 2009; 11(3):199-208. PubMed ID: 19620739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular targets for therapeutic intervention after spinal cord injury.
    Kwon BK; Borisoff JF; Tetzlaff W
    Mol Interv; 2002 Jul; 2(4):244-58. PubMed ID: 14993395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurological aspects of spinal-cord repair: promises and challenges.
    Dietz V; Curt A
    Lancet Neurol; 2006 Aug; 5(8):688-94. PubMed ID: 16857574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Return of function after spinal cord transection.
    Heimburger RF
    Spinal Cord; 2005 Jul; 43(7):438-40. PubMed ID: 15809673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Training and anti-CSPG combination therapy for spinal cord injury.
    García-Alías G; Fawcett JW
    Exp Neurol; 2012 May; 235(1):26-32. PubMed ID: 21946272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury.
    Sharma HS
    Ann N Y Acad Sci; 2007 Dec; 1122():95-111. PubMed ID: 18077567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.
    Chu GK; Yu W; Fehlings MG
    Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacological, cell, and gene therapy strategies to promote spinal cord regeneration.
    Blits B; Boer GJ; Verhaagen J
    Cell Transplant; 2002; 11(6):593-613. PubMed ID: 12428749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells.
    Pan HC; Cheng FC; Lai SZ; Yang DY; Wang YC; Lee MS
    J Clin Neurosci; 2008 Jun; 15(6):656-64. PubMed ID: 18406145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury.
    Lee SI; Kim BG; Hwang DH; Kim HM; Kim SU
    J Neurosci Res; 2009 Nov; 87(14):3186-97. PubMed ID: 19530162
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Root repair review: basic science background and clinical outcome.
    Carlstedt T
    Restor Neurol Neurosci; 2008; 26(2-3):225-41. PubMed ID: 18820413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord.
    Oudega M
    Acta Physiol (Oxf); 2007 Feb; 189(2):181-9. PubMed ID: 17250568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selected combination of neurotrophins potentiate neuroprotection and functional recovery following spinal cord injury in the rat.
    Sharma HS
    Acta Neurochir Suppl; 2010; 106():295-300. PubMed ID: 19812967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synapse formation of the cortico-spinal axons is enhanced by RGMa inhibition after spinal cord injury.
    Kyoto A; Hata K; Yamashita T
    Brain Res; 2007 Dec; 1186():74-86. PubMed ID: 17996222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury.
    Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM
    Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.