BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15672130)

  • 1. Monolayer-functionalized microfluidics devices for optical sensing of acidity.
    Mela P; Onclin S; Goedbloed MH; Levi S; Garcia-Parajo MF; van Hulst NF; Ravoo BJ; Reinhoudt DN; van den Berg A
    Lab Chip; 2005 Feb; 5(2):163-70. PubMed ID: 15672130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A perfusion-based micro opto-fluidic system (PMOFS) for continuously in-situ immune sensing.
    Tseng YT; Yang CS; Tseng FG
    Lab Chip; 2009 Sep; 9(18):2673-82. PubMed ID: 19704983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro analysis system for pH and protease activities with an integrated sample injection mechanism.
    Morimoto K; Suzuki H
    Biosens Bioelectron; 2006 Jul; 22(1):86-93. PubMed ID: 16439108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary-assembled microchip for universal integration of various chemical functions onto a single microfluidic device.
    Hisamoto H; Nakashima Y; Kitamura C; Funano S; Yasuoka M; Morishima K; Kikutani Y; Kitamori T; Terabe S
    Anal Chem; 2004 Jun; 76(11):3222-8. PubMed ID: 15167805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative.
    Doussineau T; Trupp S; Mohr GJ
    J Colloid Interface Sci; 2009 Nov; 339(1):266-70. PubMed ID: 19679316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical sensing systems for microfluidic devices: a review.
    Kuswandi B; Nuriman ; Huskens J; Verboom W
    Anal Chim Acta; 2007 Oct; 601(2):141-55. PubMed ID: 17920386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor.
    Ymeti A; Kanger JS; Greve J; Besselink GA; Lambeck PV; Wijn R; Heideman RG
    Biosens Bioelectron; 2005 Jan; 20(7):1417-21. PubMed ID: 15590297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A capillary-based microfluidic instrument suitable for immunoaffinity chromatography.
    Peoples MC; Phillips TM; Karnes HT
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 848(2):200-7. PubMed ID: 17097929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber.
    Warren-Smith SC; Heng S; Ebendorff-Heidepriem H; Abell AD; Monro TM
    Langmuir; 2011 May; 27(9):5680-5. PubMed ID: 21469740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slab optical waveguide high-acidity sensor based on an absorbance change of protoporphyrin IX.
    Umemura T; Hotta H; Abe T; Takahashi Y; Takiguchi H; Uehara M; Odake T; Tsunoda K
    Anal Chem; 2006 Nov; 78(21):7511-6. PubMed ID: 17073420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photobleaching absorbed Rhodamine B to improve temperature measurements in PDMS microchannels.
    Glawdel T; Almutairi Z; Wang S; Ren C
    Lab Chip; 2009 Jan; 9(1):171-4. PubMed ID: 19209352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocating flow-based centrifugal microfluidics mixer.
    Noroozi Z; Kido H; Micic M; Pan H; Bartolome C; Princevac M; Zoval J; Madou M
    Rev Sci Instrum; 2009 Jul; 80(7):075102. PubMed ID: 19655976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dye-exchange dynamics in micellar solutions studied by fluorescence correlation spectroscopy.
    Novo M; Felekyan S; Seidel CA; Al-Soufi W
    J Phys Chem B; 2007 Apr; 111(14):3614-24. PubMed ID: 17388518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy.
    Liu K; Tian Y; Burrows SM; Reif RD; Pappas D
    Anal Chim Acta; 2009 Sep; 651(1):85-90. PubMed ID: 19733740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the activities of glutamic oxaloacetic transaminase and glutamic pyruvic transaminase in a microfluidic system.
    Ohgami N; Upadhyay S; Kabata A; Morimoto K; Kusakabe H; Suzuki H
    Biosens Bioelectron; 2007 Feb; 22(7):1330-6. PubMed ID: 16854580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-structured molecular sensor for the optical detection of acidity.
    Martínez-Otero A; Evangelio E; Alibés R; Bourdelande JL; Ruiz-Molina D; Busqué F; Hernando J
    Langmuir; 2008 Apr; 24(7):2963-6. PubMed ID: 18315025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip microfluidic transport and mixing using electrowetting and incorporation of sensing functions.
    Satoh W; Hosono H; Suzuki H
    Anal Chem; 2005 Nov; 77(21):6857-63. PubMed ID: 16255583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the use of APTS as a fluorescent reporter dye for continuous glucose sensing.
    Sharrett Z; Gamsey S; Hirayama L; Vilozny B; Suri JT; Wessling RA; Singaram B
    Org Biomol Chem; 2009 Apr; 7(7):1461-70. PubMed ID: 19300833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer.
    Lyandres O; Shah NC; Yonzon CR; Walsh JT; Glucksberg MR; Van Duyne RP
    Anal Chem; 2005 Oct; 77(19):6134-9. PubMed ID: 16194070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.