BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 15672216)

  • 1. Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration.
    Yang Y; Gu X; Tan R; Hu W; Wang X; Zhang P; Zhang T
    Biotechnol Lett; 2004 Dec; 26(23):1793-7. PubMed ID: 15672216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical properties and biocompatibility of a porous chitosan-based fiber-reinforced conduit for nerve regeneration.
    Wang A; Ao Q; Wei Y; Gong K; Liu X; Zhao N; Gong Y; Zhang X
    Biotechnol Lett; 2007 Nov; 29(11):1697-702. PubMed ID: 17628751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen-chitosan nerve guides for peripheral nerve repair: a histomorphometric study.
    Patel M; VandeVord PJ; Matthew HW; De Silva S; Wu B; Wooley PH
    J Biomater Appl; 2008 Sep; 23(2):101-21. PubMed ID: 18467748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration.
    Chang CJ; Hsu SH
    Biomaterials; 2006 Mar; 27(7):1035-42. PubMed ID: 16098582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of air plasma in surface modification of peripheral nerve conduits.
    Ni HC; Lin ZY; Hsu SH; Chiu IM
    Acta Biomater; 2010 Jun; 6(6):2066-76. PubMed ID: 20040388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical stimulation accelerates motor functional recovery in the rat model of 15-mm sciatic nerve gap bridged by scaffolds with longitudinally oriented microchannels.
    Huang J; Lu L; Hu X; Ye Z; Peng Y; Yan X; Geng D; Luo Z
    Neurorehabil Neural Repair; 2010 Oct; 24(8):736-45. PubMed ID: 20702391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration.
    Hu X; Huang J; Ye Z; Xia L; Li M; Lv B; Shen X; Luo Z
    Tissue Eng Part A; 2009 Nov; 15(11):3297-308. PubMed ID: 19382873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced peripheral nerve regeneration through a poled bioresorbable poly(lactic-co-glycolic acid) guidance channel.
    Bryan DJ; Tang JB; Doherty SA; Hile DD; Trantolo DJ; Wise DL; Summerhayes IC
    J Neural Eng; 2004 Jun; 1(2):91-8. PubMed ID: 15876627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tendon chitosan tubes covalently coupled with synthesized laminin peptides facilitate nerve regeneration in vivo.
    Suzuki M; Itoh S; Yamaguchi I; Takakuda K; Kobayashi H; Shinomiya K; Tanaka J
    J Neurosci Res; 2003 Jun; 72(5):646-59. PubMed ID: 12749030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration.
    Bian YZ; Wang Y; Aibaidoula G; Chen GQ; Wu Q
    Biomaterials; 2009 Jan; 30(2):217-25. PubMed ID: 18849069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration.
    Rutkowski GE; Miller CA; Jeftinija S; Mallapragada SK
    J Neural Eng; 2004 Sep; 1(3):151-7. PubMed ID: 15876634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on chitosan and PHBHHx used as nerve regeneration conduit material].
    Yang Y; Li X; Li G; Zhao N; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):25-9. PubMed ID: 11951515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of gamma-PGA/chitosan composite tissue engineering matrices.
    Hsieh CY; Tsai SP; Wang DM; Chang YN; Hsieh HJ
    Biomaterials; 2005 Oct; 26(28):5617-23. PubMed ID: 15878366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties.
    Kashiwazaki H; Kishiya Y; Matsuda A; Yamaguchi K; Iizuka T; Tanaka J; Inoue N
    Biomed Mater Eng; 2009; 19(2-3):133-40. PubMed ID: 19581706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material.
    Chen YS; Chang JY; Cheng CY; Tsai FJ; Yao CH; Liu BS
    Biomaterials; 2005 Jun; 26(18):3911-8. PubMed ID: 15626438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porosity of the wall of a Neurolac nerve conduit hampers nerve regeneration.
    Meek MF; Den Dunnen WF
    Microsurgery; 2009; 29(6):473-8. PubMed ID: 19308952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro.
    Ao Q; Wang A; Cao W; Zhang L; Kong L; He Q; Gong Y; Zhang X
    J Biomed Mater Res A; 2006 Apr; 77(1):11-8. PubMed ID: 16345091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material.
    Xie F; Li QF; Gu B; Liu K; Shen GX
    Microsurgery; 2008; 28(6):471-9. PubMed ID: 18623157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyester based nerve guidance conduit design.
    Yucel D; Kose GT; Hasirci V
    Biomaterials; 2010 Mar; 31(7):1596-603. PubMed ID: 19932504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair.
    Liu BS
    J Biomed Mater Res A; 2008 Dec; 87(4):1092-102. PubMed ID: 18428983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.