These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 1567226)

  • 1. N-anthraniloyl-Ala-Ala-Phe-4-nitroanilide, a highly sensitive substrate for subtilisins.
    Stambolieva NA; Ivanov IP; Yomtova VM
    Arch Biochem Biophys; 1992 May; 294(2):703-6. PubMed ID: 1567226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new substrate and two inhibitors applicable for thermitase, subtilisin BPN' and alpha-chymotrypsin. Comparison of kinetic parameters with customary substrates and inhibitors.
    Brömme D; Fittkau S
    Biomed Biochim Acta; 1985; 44(7-8):1089-94. PubMed ID: 3910035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic specificities of BPN' and Carlsberg subtilisins. Mapping the aromatic binding site.
    Karasaki Y; Ohno M
    J Biochem; 1978 Sep; 84(3):531-8. PubMed ID: 102640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of benzyloxycarbonylglycylglycinephenylalanine p-nitroanilide and an evaluation of its potential as a substrate for alpha-chymotrypsin and subtilisin BPN'.
    O'Sullivan DB; Murphy E; O'Connell TP; Murphy EA; Malthouse JP
    Biochem Soc Trans; 1998 Feb; 26(1):S67. PubMed ID: 10909825
    [No Abstract]   [Full Text] [Related]  

  • 5. Substrate effects on the enzymatic activity of alpha-chymotrypsin in reverse micelles.
    Mao Q; Walde P
    Biochem Biophys Res Commun; 1991 Aug; 178(3):1105-12. PubMed ID: 1872834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the s-2 subsite selectivity of alkaline proteases in hydrolysis of diastereo-peptide esters and molecular-modeling interpretation.
    Chen ST; Tu CC; Chen SY; Huang HC; Wang KT
    Bioorg Med Chem; 1993 Nov; 1(5):361-7. PubMed ID: 8081866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering a novel specificity in subtilisin BPN'.
    Rheinnecker M; Baker G; Eder J; Fersht AR
    Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala.
    Mei HC; Liaw YC; Li YC; Wang DC; Takagi H; Tsai YC
    Protein Eng; 1998 Feb; 11(2):109-17. PubMed ID: 9605545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of the inhibitory effects of propeptides subtilisin BPN' and Carlsberg to bacterial serine proteases.
    Huang HW; Chen WC; Wu CY; Yu HC; Lin WY; Chen ST; Wang KT
    Protein Eng; 1997 Oct; 10(10):1227-33. PubMed ID: 9488148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free energy perturbation calculations on binding and catalysis after mutating threonine 220 in subtilisin.
    Mizushima N; Spellmeyer D; Hirono S; Pearlman D; Kollman P
    J Biol Chem; 1991 Jun; 266(18):11801-9. PubMed ID: 1904871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible coupling of chemical to structural dynamics in subtilisin BPN' catalyzed hydrolysis.
    Ng K; Rosenberg A
    Biophys Chem; 1991 Jan; 39(1):57-68. PubMed ID: 2012834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of proteolytic enzymes by flow-injection analysis.
    Nicholas P; Lamy A; Reymond S
    Anal Biochem; 1991 Jan; 192(1):70-3. PubMed ID: 2048737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing subtilisin BPN' to cleave substrates containing dibasic residues.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-anthraniloylation converts peptide p-nitroanilides into fluorogenic substrates of proteases without loss of their chromogenic properties.
    Bratovanova EK; Petkov DD
    Anal Biochem; 1987 Apr; 162(1):213-8. PubMed ID: 3300413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary interactions in mesentericopeptidase-catalyzed hydrolysis of peptide ester and 4-nitroanilide substrates.
    Stambolieva NA; Bratovanova EK; Decheva DD; Arnaudov MV
    Arch Biochem Biophys; 1983 Sep; 225(2):548-53. PubMed ID: 6354092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme-substrate interactions in the hydrolysis of peptide substrates by thermitase, subtilisin BPN', and proteinase K.
    Brömme D; Peters K; Fink S; Fittkau S
    Arch Biochem Biophys; 1986 Feb; 244(2):439-46. PubMed ID: 3511847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for designing peptide substrates for proteases. Tripeptidyl-p-nitroanilide substrates for subtilisin Carlsberg.
    Pozsgay M; Gáspár R; Bajusz S; Elödi P
    Eur J Biochem; 1979 Mar; 95(1):115-9. PubMed ID: 456343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg.
    Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U
    J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive substrates for neprilysin (neutral endopeptidase) and thermolysin that are highly resistant to serine proteases.
    Spungin-Bialik A; Ben-Meir D; Fudim E; Carmeli S; Blumberg S
    FEBS Lett; 1996 Feb; 380(1-2):79-82. PubMed ID: 8603751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.