These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 15672454)
1. Phosphoprotein profiling of erythropoietin receptor- dependent pathways using different proteomic strategies. Körbel S; Büchse T; Prietzsch H; Sasse T; Schümann M; Krause E; Brock J; Bittorf T Proteomics; 2005 Jan; 5(1):91-100. PubMed ID: 15672454 [TBL] [Abstract][Full Text] [Related]
2. Relative quantification of erythropoietin receptor-dependent phosphoproteins using in-gel 18O-labeling and tandem mass spectrometry. Körbel S; Schümann M; Bittorf T; Krause E Rapid Commun Mass Spectrom; 2005; 19(16):2259-71. PubMed ID: 16021614 [TBL] [Abstract][Full Text] [Related]
3. Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. Vanrobaeys F; Van Coster R; Dhondt G; Devreese B; Van Beeumen J J Proteome Res; 2005; 4(6):2283-93. PubMed ID: 16335977 [TBL] [Abstract][Full Text] [Related]
4. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Salih E Mass Spectrom Rev; 2005; 24(6):828-46. PubMed ID: 15538747 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of phosphotyrosyl proteins in morphine-dependent rat brains. Kim SY; Chudapongse N; Lee SM; Levin MC; Oh JT; Park HJ; Ho IK Brain Res Mol Brain Res; 2005 Jan; 133(1):58-70. PubMed ID: 15661365 [TBL] [Abstract][Full Text] [Related]
6. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). Wu SL; Kim J; Hancock WS; Karger B J Proteome Res; 2005; 4(4):1155-70. PubMed ID: 16083266 [TBL] [Abstract][Full Text] [Related]
7. Functional proteomics of signal transduction by membrane receptors. Godovac-Zimmermann J; Soskic V; Poznanovic S; Brianza F Electrophoresis; 1999; 20(4-5):952-61. PubMed ID: 10344271 [TBL] [Abstract][Full Text] [Related]
8. Erythropoietin preconditioning in neuronal cultures: signaling, protection from in vitro ischemia, and proteomic analysis. Meloni BP; Tilbrook PA; Boulos S; Arthur PG; Knuckey NW J Neurosci Res; 2006 Mar; 83(4):584-93. PubMed ID: 16435392 [TBL] [Abstract][Full Text] [Related]
9. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology. Yan G; Li L; Tao Y; Liu S; Liu Y; Luo W; Wu Y; Tang M; Dong Z; Cao Y Proteomics; 2006 Mar; 6(6):1810-21. PubMed ID: 16470631 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine phosphoproteins in cancer cells. Schumacher JA; Crockett DK; Elenitoba-Johnson KS; Lim MS J Mol Diagn; 2007 Apr; 9(2):169-77. PubMed ID: 17384208 [TBL] [Abstract][Full Text] [Related]
11. Large-scale study of phosphoproteins involved in long-term potentiation in the rat dentate gyrus in vivo. Chardonnet S; Le Marechal P; Cheval H; Le Caer JP; Decottignies P; Laprevote O; Laroche S; Davis S Eur J Neurosci; 2008 Jun; 27(11):2985-98. PubMed ID: 18588538 [TBL] [Abstract][Full Text] [Related]
12. Defining mitogen-activated protein kinase pathways with mass spectrometry-based approaches. Powell DW; Pierce WM; McLeish KR Mass Spectrom Rev; 2005; 24(6):847-64. PubMed ID: 15619233 [TBL] [Abstract][Full Text] [Related]
13. Use of mass spectrometry to study signaling pathways. Pandey A; Andersen JS; Mann M Sci STKE; 2000 Jun; 2000(37):pl1. PubMed ID: 11752594 [TBL] [Abstract][Full Text] [Related]
14. Direct on-membrane peptide mass fingerprinting with MALDI-MS of tyrosine-phosphorylated proteins detected by immunostaining. Nakanishi T; Ando E; Furuta M; Tsunasawa S; Nishimura O J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Feb; 847(1):24-9. PubMed ID: 16959554 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis reveals novel molecules involved in insulin signaling pathway. Wang Y; Li R; Du D; Zhang C; Yuan H; Zeng R; Chen Z J Proteome Res; 2006 Apr; 5(4):846-55. PubMed ID: 16602692 [TBL] [Abstract][Full Text] [Related]
16. Proteomic identification of oxidatively modified retinal proteins in a chronic pressure-induced rat model of glaucoma. Tezel G; Yang X; Cai J Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3177-87. PubMed ID: 16123417 [TBL] [Abstract][Full Text] [Related]
17. New sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor targeting. Joubert L; Hanson B; Barthet G; Sebben M; Claeysen S; Hong W; Marin P; Dumuis A; Bockaert J J Cell Sci; 2004 Oct; 117(Pt 22):5367-79. PubMed ID: 15466885 [TBL] [Abstract][Full Text] [Related]
18. Phospho-proteomic approach to identify new targets of leucine deprivation in muscle cells. Talvas J; Obled A; Sayd T; Chambon C; Mordier S; Fafournoux P Anal Biochem; 2008 Oct; 381(1):148-50. PubMed ID: 18619411 [TBL] [Abstract][Full Text] [Related]
20. Proteomic study of muscle sarcoplasmic proteins using AUT-PAGE/SDS-PAGE as two-dimensional gel electrophoresis. Picariello G; De Martino A; Mamone G; Ferranti P; Addeo F; Faccia M; Spagnamusso S; Di Luccia A J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Mar; 833(1):101-8. PubMed ID: 16503425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]