BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15672821)

  • 21. Regulation of mating and pathogenic development in Ustilago maydis.
    Feldbrügge M; Kämper J; Steinberg G; Kahmann R
    Curr Opin Microbiol; 2004 Dec; 7(6):666-72. PubMed ID: 15556041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posttranscriptional control of growth and development in Ustilago maydis.
    Vollmeister E; Feldbrügge M
    Curr Opin Microbiol; 2010 Dec; 13(6):693-9. PubMed ID: 20880737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Clp1 protein is required for clamp formation and pathogenic development of Ustilago maydis.
    Scherer M; Heimel K; Starke V; Kämper J
    Plant Cell; 2006 Sep; 18(9):2388-401. PubMed ID: 16920779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.
    Allen A; Islamovic E; Kaur J; Gold S; Shah D; Smith TJ
    Plant Biotechnol J; 2011 Oct; 9(8):857-64. PubMed ID: 21303448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A gene that encodes a product with similarity to dioxygenases is highly expressed in teliospores of Ustilago maydis.
    Huber SM; Lottspeich F; Kämper J
    Mol Genet Genomics; 2002 Aug; 267(6):757-71. PubMed ID: 12207223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional analysis of the pH responsive pathway Pal/Rim in the phytopathogenic basidiomycete Ustilago maydis.
    Cervantes-Chávez JA; Ortiz-Castellanos L; Tejeda-Sartorius M; Gold S; Ruiz-Herrera J
    Fungal Genet Biol; 2010 May; 47(5):446-57. PubMed ID: 20153837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biz1, a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin.
    Flor-Parra I; Vranes M; Kämper J; Pérez-Martín J
    Plant Cell; 2006 Sep; 18(9):2369-87. PubMed ID: 16905655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Promoter analysis of cgl2, a galectin encoding gene transcribed during fruiting body formation in Coprinopsis cinerea (Coprinus cinereus).
    Bertossa RC; Kües U; Aebi M; Künzler M
    Fungal Genet Biol; 2004 Dec; 41(12):1120-31. PubMed ID: 15531215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of GCR1, the transcriptional activator of glycolytic enzyme genes in the yeast Saccharomyces cerevisiae, is positively autoregulated by Gcr1p.
    Sasaki H; Kishimoto T; Mizuno T; Shinzato T; Uemura H
    Yeast; 2005 Mar; 22(4):305-19. PubMed ID: 15789351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Construction and evaluation of a maize (Zea mays) chimaeric promoter with activity in kernel endosperm and embryo.
    Shepherd CT; Scott MP
    Biotechnol Appl Biochem; 2009 Mar; 52(Pt 3):233-43. PubMed ID: 18627354
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fungal pathogenesis: gene clusters unveiled as secrets within the Ustilago maydis code.
    Howlett BJ; Idnurm A; Heitman J
    Curr Biol; 2007 Feb; 17(3):R87-90. PubMed ID: 17276906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis.
    Eichhorn H; Lessing F; Winterberg B; Schirawski J; Kämper J; Müller P; Kahmann R
    Plant Cell; 2006 Nov; 18(11):3332-45. PubMed ID: 17138696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for a Ustilago maydis steroid 5alpha-reductase by functional expression in Arabidopsis det2-1 mutants.
    Basse CW; Kerschbamer C; Brustmann M; Altmann T; Kahmann R
    Plant Physiol; 2002 Jun; 129(2):717-32. PubMed ID: 12068114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1.
    Bortfeld M; Auffarth K; Kahmann R; Basse CW
    Plant Cell; 2004 Aug; 16(8):2233-48. PubMed ID: 15273296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots.
    Maruyama-Nakashita A; Nakamura Y; Watanabe-Takahashi A; Inoue E; Yamaya T; Takahashi H
    Plant J; 2005 May; 42(3):305-14. PubMed ID: 15842617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The posttranscriptional machinery of Ustilago maydis.
    Feldbrügge M; Zarnack K; Vollmeister E; Baumann S; Koepke J; König J; Münsterkötter M; Mannhaupt G
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S40-6. PubMed ID: 18468465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The proximal promoter of the human cathepsin G gene conferring myeloid-specific expression includes C/EBP, c-myb and PU.1 binding sites.
    Lennartsson A; Garwicz D; Lindmark A; Gullberg U
    Gene; 2005 Aug; 356():193-202. PubMed ID: 16019164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and comparative analysis of the wheat TaPT2 promoter: identification in silico of new putative regulatory motifs conserved between monocots and dicots.
    Tittarelli A; Milla L; Vargas F; Morales A; Neupert C; Meisel L; Salvo-G H; Peñaloza E; Muñoz G; Corcuera L; Silva H
    J Exp Bot; 2007; 58(10):2573-82. PubMed ID: 17562688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis.
    Aichinger C; Hansson K; Eichhorn H; Lessing F; Mannhaupt G; Mewes W; Kahmann R
    Mol Genet Genomics; 2003 Dec; 270(4):303-14. PubMed ID: 14523645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of putative cis-regulatory elements that control the transcriptional activity of the human Oct4 promoter.
    Yang HM; Do HJ; Oh JH; Kim JH; Choi SY; Cha KY; Chung HM; Kim JH
    J Cell Biochem; 2005 Nov; 96(4):821-30. PubMed ID: 16149048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.