These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 15673)
1. Fermentation of glucose by Acetobacter melanogenus. Stroshane RM; Perlman D Biotechnol Bioeng; 1977 Apr; 19(4):459-65. PubMed ID: 15673 [TBL] [Abstract][Full Text] [Related]
2. [Enzymatic activity of Acetobacter suboxydans. Influence of pH on the induction of 5-ketogenic activity]. Galante E; Scalaffa P Boll Soc Ital Biol Sper; 1964 Oct; 40(20):1265-7. PubMed ID: 5877161 [No Abstract] [Full Text] [Related]
3. Comparison of D-gluconic acid production in selected strains of acetic acid bacteria. Sainz F; Navarro D; Mateo E; Torija MJ; Mas A Int J Food Microbiol; 2016 Apr; 222():40-7. PubMed ID: 26848948 [TBL] [Abstract][Full Text] [Related]
4. [Efficiency of glucose utilization by Gluconobacter oxydans]. Uspenskaia SN; Loĭtsianskaia MS Mikrobiologiia; 1979; 48(3):400-5. PubMed ID: 470626 [TBL] [Abstract][Full Text] [Related]
5. A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Elfari M; Ha SW; Bremus C; Merfort M; Khodaverdi V; Herrmann U; Sahm H; Görisch H Appl Microbiol Biotechnol; 2005 Mar; 66(6):668-74. PubMed ID: 15735967 [TBL] [Abstract][Full Text] [Related]
6. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation. Shafiei R; Zarmehrkhorshid R; Mounir M; Thonart P; Delvigne F Bioprocess Biosyst Eng; 2017 May; 40(5):769-780. PubMed ID: 28204982 [TBL] [Abstract][Full Text] [Related]
7. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Merfort M; Herrmann U; Bringer-Meyer S; Sahm H Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous determination of glucose, D-gluconic, 2-keto-D-gluconic and 5-keto-D-gluconic acids by ion chromatography-pulsed amperometric detection with column-switching technique. Zhu Z; Xi L; Subhani Q; Huang Z; Zhu Y Talanta; 2013 Sep; 113():113-7. PubMed ID: 23708631 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor. Mounir M; Shafiei R; Zarmehrkhorshid R; Hamouda A; Ismaili Alaoui M; Thonart P J Biosci Bioeng; 2016 Feb; 121(2):166-71. PubMed ID: 26253254 [TBL] [Abstract][Full Text] [Related]
10. Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans. Anastassiadis S; Aivasidis A; Wandrey C Appl Microbiol Biotechnol; 2003 Apr; 61(2):110-7. PubMed ID: 12655452 [TBL] [Abstract][Full Text] [Related]
11. Process optimization of continuous gluconic acid fermentation by isolated yeast-like strains of Aureobasidium pullulans. Anastassiadis S; Aivasidis A; Wandrey C; Rehm HJ Biotechnol Bioeng; 2005 Aug; 91(4):494-501. PubMed ID: 15937884 [TBL] [Abstract][Full Text] [Related]
12. New developments in oxidative fermentation. Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142 [TBL] [Abstract][Full Text] [Related]
13. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane. Godjevargova T; Dayal R; Turmanova S Macromol Biosci; 2004 Oct; 4(10):950-6. PubMed ID: 15497133 [TBL] [Abstract][Full Text] [Related]
14. Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes NCTA 418. Neijssel OM; Tempest DW Arch Microbiol; 1975 Oct; 105(2):183-5. PubMed ID: 1106345 [TBL] [Abstract][Full Text] [Related]
15. Fermentation processes employed in vitamin C synthesis. Kulhánek M Adv Appl Microbiol; 1970; 12():11-33. PubMed ID: 4920194 [No Abstract] [Full Text] [Related]
16. D-hexosaminate production by oxidative fermentation. Moonmangmee D; Adachi O; Toyama H; Matsushita K Appl Microbiol Biotechnol; 2004 Dec; 66(3):253-8. PubMed ID: 15290129 [TBL] [Abstract][Full Text] [Related]
17. Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. Cleenwerck I; Gonzalez A; Camu N; Engelbeen K; De Vos P; De Vuyst L Int J Syst Evol Microbiol; 2008 Sep; 58(Pt 9):2180-5. PubMed ID: 18768626 [TBL] [Abstract][Full Text] [Related]
18. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation. Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291 [TBL] [Abstract][Full Text] [Related]
19. [Auxotrophism dictated by the source of energy in Acetobacter aceti]. Monard D; Hütter R; Ettlinger L Pathol Microbiol (Basel); 1967; 30(6):966-71. PubMed ID: 5591333 [No Abstract] [Full Text] [Related]
20. [A comparative study of the formation of 2-keto-D-gluconic acid by free and immobilized cells of Pseudomonas putida]. Voloshenko MI; Disler EN; Koshcheenko KA Prikl Biokhim Mikrobiol; 1988; 24(6):779-83. PubMed ID: 3249741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]