These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15673213)

  • 1. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation.
    Odjegba VJ; Fasidi IO
    Ecotoxicology; 2004 Oct; 13(7):637-46. PubMed ID: 15673213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.).
    Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X
    Environ Sci Pollut Res Int; 2011 Jul; 18(6):978-86. PubMed ID: 21287283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance mechanism and phytoremediation potential of
    Li Y; Xin J; Ge W; Tian R
    Int J Phytoremediation; 2022; 24(12):1259-1266. PubMed ID: 35037542
    [No Abstract]   [Full Text] [Related]  

  • 4. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt.
    Galal TM; Farahat EA
    Environ Monit Assess; 2015 Nov; 187(11):701. PubMed ID: 26497561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process.
    Veseý T; Tlustos P; Száková J
    Int J Phytoremediation; 2012 Apr; 14(4):335-49. PubMed ID: 22567715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies.
    Kumar V; Singh J; Kumar P
    Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous.
    Mufarrege MM; Hadad HR; Maine MA
    Arch Environ Contam Toxicol; 2010 Jan; 58(1):53-61. PubMed ID: 19506937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent.
    Kumar V; Singh J; Chopra AK
    Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L.
    Das S; Goswami S; Talukdar AD
    Bull Environ Contam Toxicol; 2014 Feb; 92(2):169-74. PubMed ID: 24220931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce (
    Şentürk İ; Eyceyurt Divarcı NS; Öztürk M
    Int J Phytoremediation; 2023; 25(5):550-561. PubMed ID: 35786212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of the bioaccumulative efficiency of
    Ergönül MB; Nassouhi D; Atasağun S
    Int J Phytoremediation; 2020; 22(2):201-209. PubMed ID: 31475565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper and zinc accumulation, distribution, and tolerance in Pistia stratiotes L.; revealing the role of root caps.
    Kokavcová A; Bokhari SNH; Mijovilovich A; Morina F; Lukačová Z; Kohanová J; Lux A; Küpper H
    Aquat Toxicol; 2023 Nov; 264():106731. PubMed ID: 37890272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experiments and modeling to develop a Pistia stratiotes based Floating Vegetated System (FVS) for the removal of heavy metals (Pb, Zn, Cr, Cu, Ni).
    Samal K; Dash RR
    Sci Total Environ; 2024 May; 926():171981. PubMed ID: 38547997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands.
    Galal TM; Eid EM; Dakhil MA; Hassan LM
    Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of macro- and trace elements by European frogbit (Hydrocharis morsus-ranae L.) in relation to environmental pollution.
    Polechońska L; Samecka-Cymerman A
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3469-80. PubMed ID: 26490926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in antioxidant enzyme activities in Eichhornia crassipes (Pontederiaceae) and Pistia stratiotes (Araceae) under heavy metal stress.
    Odjegba VJ; Fasidi IO
    Rev Biol Trop; 2007; 55(3-4):815-23. PubMed ID: 19086387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation potential of Phragmites australis in Hokersar wetland - a Ramsar site of Kashmir Himalaya.
    Ahmad SS; Reshi ZA; Shah MA; Rashid I; Ara R; Andrabi SM
    Int J Phytoremediation; 2014; 16(7-12):1183-91. PubMed ID: 24933910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.
    Singh NK; Raghubanshi AS; Upadhyay AK; Rai UN
    Ecotoxicol Environ Saf; 2016 Aug; 130():224-33. PubMed ID: 27131746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.