These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 15673438)

  • 1. Factors limiting motor recovery after facial nerve transection in the rat: combined structural and functional analyses.
    Guntinas-Lichius O; Irintchev A; Streppel M; Lenzen M; Grosheva M; Wewetzer K; Neiss WF; Angelov DN
    Eur J Neurosci; 2005 Jan; 21(2):391-402. PubMed ID: 15673438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic and therapeutic factors determining the recovery of motor function after peripheral nerve transection.
    Skouras E; Ozsoy U; Sarikcioglu L; Angelov DN
    Ann Anat; 2011 Jul; 193(4):286-303. PubMed ID: 21458252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in facial nerve function, morphology and neurotrophic factor expression in response to three types of nerve injury.
    Zhang L; Fan Z; Han Y; Xu L; Luo J; Li J; Wang H
    J Laryngol Otol; 2010 Mar; 124(3):265-71. PubMed ID: 19930777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative roles of soluble trophic factors in facial nerve regeneration, target reinnervation, and recovery of vibrissal whisking.
    Bendella H; Rink S; Grosheva M; Sarikcioglu L; Gordon T; Angelov DN
    Exp Neurol; 2018 Feb; 300():100-110. PubMed ID: 29104116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats.
    Sinis N; Horn F; Genchev B; Skouras E; Merkel D; Angelova SK; Kaidoglou K; Michael J; Pavlov S; Igelmund P; Schaller HE; Irintchev A; Dunlop SA; Angelov DN
    Ann Anat; 2009 Oct; 191(4):356-70. PubMed ID: 19481914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manual stimulation of facial muscles improves functional recovery after hypoglossal-facial anastomosis and interpositional nerve grafting of the facial nerve in adult rats.
    Guntinas-Lichius O; Hundeshagen G; Paling T; Streppel M; Grosheva M; Irintchev A; Skouras E; Alvanou A; Angelova SK; Kuerten S; Sinis N; Dunlop SA; Angelov DN
    Neurobiol Dis; 2007 Oct; 28(1):101-12. PubMed ID: 17698365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical stimulation of paralyzed vibrissal muscles following facial nerve injury in adult rat promotes full recovery of whisking.
    Angelov DN; Ceynowa M; Guntinas-Lichius O; Streppel M; Grosheva M; Kiryakova SI; Skouras E; Maegele M; Irintchev A; Neiss WF; Sinis N; Alvanou A; Dunlop SA
    Neurobiol Dis; 2007 Apr; 26(1):229-42. PubMed ID: 17296303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of trigeminal afferents improves motor recovery after facial nerve injury: functional, electrophysiological and morphological proofs.
    Skouras E; Pavlov S; Bendella H; Angelov DN
    Adv Anat Embryol Cell Biol; 2013; 213():1-105, vii. PubMed ID: 23322155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input.
    Pavlov SP; Grosheva M; Streppel M; Guntinas-Lichius O; Irintchev A; Skouras E; Angelova SK; Kuerten S; Sinis N; Dunlop SA; Angelov DN
    Exp Neurol; 2008 May; 211(1):292-300. PubMed ID: 18381213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galectin-1 in regenerating motoneurons.
    McGraw J; McPhail LT; Oschipok LW; Horie H; Poirier F; Steeves JD; Ramer MS; Tetzlaff W
    Eur J Neurosci; 2004 Dec; 20(11):2872-80. PubMed ID: 15579141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pituitary adenylate cyclase-activating polypeptide on facial nerve recovery in the Guinea pig.
    Kimura H; Kawatani M; Ito E; Ishikawa K
    Laryngoscope; 2003 Jun; 113(6):1000-6. PubMed ID: 12782812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion.
    Streppel M; Azzolin N; Dohm S; Guntinas-Lichius O; Haas C; Grothe C; Wevers A; Neiss WF; Angelov DN
    Eur J Neurosci; 2002 Apr; 15(8):1327-42. PubMed ID: 11994127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opposite impacts of tenascin-C and tenascin-R deficiency in mice on the functional outcome of facial nerve repair.
    Guntinas-Lichius O; Angelov DN; Morellini F; Lenzen M; Skouras E; Schachner M; Irintchev A
    Eur J Neurosci; 2005 Nov; 22(9):2171-9. PubMed ID: 16262655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair.
    Eberhardt KA; Irintchev A; Al-Majed AA; Simova O; Brushart TM; Gordon T; Schachner M
    Exp Neurol; 2006 Apr; 198(2):500-10. PubMed ID: 16460731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model.
    Cho HH; Jang S; Lee SC; Jeong HS; Park JS; Han JY; Lee KH; Cho YB
    Laryngoscope; 2010 May; 120(5):907-13. PubMed ID: 20422684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of olfactory ensheathing cells stimulates the collateral sprouting from axotomized adult rat facial motoneurons.
    Guntinas-Lichius O; Angelov DN; Tomov TL; Dramiga J; Neiss WF; Wewetzer K
    Exp Neurol; 2001 Nov; 172(1):70-80. PubMed ID: 11681841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats.
    Grosheva M; Guntinas-Lichius O; Arnhold S; Skouras E; Kuerten S; Streppel M; Angelova SK; Wewetzer K; Radtke C; Dunlop SA; Angelov DN
    Biol Chem; 2008 Jul; 389(7):873-88. PubMed ID: 18627308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myelin-associated glycoprotein reduces axonal branching and enhances functional recovery after sciatic nerve transection in rats.
    Tomita K; Kubo T; Matsuda K; Yano K; Tohyama M; Hosokawa K
    Glia; 2007 Nov; 55(14):1498-507. PubMed ID: 17705198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve.
    Tannemaat MR; Eggers R; Hendriks WT; de Ruiter GC; van Heerikhuize JJ; Pool CW; Malessy MJ; Boer GJ; Verhaagen J
    Eur J Neurosci; 2008 Oct; 28(8):1467-79. PubMed ID: 18973572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones.
    Suarez V; Guntinas-Lichius O; Streppel M; Ingorokva S; Grosheva M; Neiss WF; Angelov DN; Klimaschewski L
    Eur J Neurosci; 2006 Sep; 24(6):1555-64. PubMed ID: 17004919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.