These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15673458)

  • 1. Dynamics of olfactory learning-induced up-regulation of L1 in the piriform cortex and hippocampus.
    Knafo S; Barkai E; Libersat F; Sandi C; Venero C
    Eur J Neurosci; 2005 Jan; 21(2):581-6. PubMed ID: 15673458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Olfactory learning-related NCAM expression is state, time, and location specific and is correlated with individual learning capabilities.
    Knafo S; Barkai E; Herrero AI; Libersat F; Sandi C; Venero C
    Hippocampus; 2005; 15(3):316-25. PubMed ID: 15490465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal up-regulation of NCAM expression and polysialylation plays a key role on spatial memory.
    Venero C; Herrero AI; Touyarot K; Cambon K; López-Fernández MA; Berezin V; Bock E; Sandi C
    Eur J Neurosci; 2006 Mar; 23(6):1585-95. PubMed ID: 16553622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Olfactory learning-induced morphological modifications in single dendritic spines of young rats.
    Knafo S; Libersat F; Barkai E
    Eur J Neurosci; 2005 Apr; 21(8):2217-26. PubMed ID: 15869518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cue valence representation studied by Fos immunocytochemistry after acquisition of a discrimination learning task.
    Roullet F; Datiche F; Liénard F; Cattarelli M
    Brain Res Bull; 2004 Jul; 64(1):31-8. PubMed ID: 15275954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning-stage dependent Fos expression in the rat brain during acquisition of an olfactory discrimination task.
    Roullet F; Datiche F; Liénard F; Cattarelli M
    Behav Brain Res; 2005 Feb; 157(1):127-37. PubMed ID: 15617779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of learning-induced cellular modifications in the cortex.
    Barkai E
    Biol Cybern; 2005 Jun; 92(6):360-6. PubMed ID: 15906082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olfactory discrimination ability and brain expression of c-fos, Gir and Glut1 mRNA are altered in n-3 fatty acid-depleted rats.
    Hichami A; Datiche F; Ullah S; Liénard F; Chardigny JM; Cattarelli M; Khan NA
    Behav Brain Res; 2007 Nov; 184(1):1-10. PubMed ID: 17686536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cellular correlate of learning-induced metaplasticity in the hippocampus.
    Zelcer I; Cohen H; Richter-Levin G; Lebiosn T; Grossberger T; Barkai E
    Cereb Cortex; 2006 Apr; 16(4):460-8. PubMed ID: 15958777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats.
    Knafo S; Libersat F; Barkai E
    Eur J Neurosci; 2005 Feb; 21(4):927-35. PubMed ID: 15787699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olfactory learning-induced enhancement of the predisposition for LTP induction.
    Cohen Y; Avramoav S; Barkai E; Maroun M
    Learn Mem; 2011 Sep; 18(9):594-7. PubMed ID: 21868439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons.
    Knafo S; Ariav G; Barkai E; Libersat F
    Hippocampus; 2004; 14(7):819-25. PubMed ID: 15382252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning in the absence of experience-dependent regulation of NMDAR composition.
    Lebel D; Sidhu N; Barkai E; Quinlan EM
    Learn Mem; 2006; 13(5):566-70. PubMed ID: 16980547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional difference between rat perirhinal cortex and hippocampus in object and place discrimination tasks.
    Abe H; Ishida Y; Nonaka H; Iwasaki T
    Behav Brain Res; 2009 Feb; 197(2):388-97. PubMed ID: 18984009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity.
    Meighan SE; Meighan PC; Choudhury P; Davis CJ; Olson ML; Zornes PA; Wright JW; Harding JW
    J Neurochem; 2006 Mar; 96(5):1227-41. PubMed ID: 16464240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morris water maze learning in two rat strains increases the expression of the polysialylated form of the neural cell adhesion molecule in the dentate gyrus but has no effect on hippocampal neurogenesis.
    Van der Borght K; Wallinga AE; Luiten PG; Eggen BJ; Van der Zee EA
    Behav Neurosci; 2005 Aug; 119(4):926-32. PubMed ID: 16187820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat.
    Sairanen M; O'Leary OF; Knuuttila JE; Castrén E
    Neuroscience; 2007 Jan; 144(1):368-74. PubMed ID: 17049169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immediate early gene activation in hippocampus and dorsal striatum: effects of explicit place and response training.
    Gill KM; Bernstein IL; Mizumori SJ
    Neurobiol Learn Mem; 2007 May; 87(4):583-96. PubMed ID: 17317230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats.
    Marquis JP; Goulet S; Doré FY
    Neurobiol Learn Mem; 2008 Sep; 90(2):339-46. PubMed ID: 18490183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat.
    Mouly AM; Di Scala G
    Neuroscience; 2006; 137(4):1131-41. PubMed ID: 16325349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.