BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 15673549)

  • 1. Fictive swimming motor patterns in wild type and mutant larval zebrafish.
    Masino MA; Fetcho JR
    J Neurophysiol; 2005 Jun; 93(6):3177-88. PubMed ID: 15673549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish.
    Buss RR; Drapeau P
    J Neurophysiol; 2001 Jul; 86(1):197-210. PubMed ID: 11431502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.
    McDearmid JR; Drapeau P
    J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Episodic swimming in the larval zebrafish is generated by a spatially distributed spinal network with modular functional organization.
    Wiggin TD; Anderson TM; Eian J; Peck JH; Masino MA
    J Neurophysiol; 2012 Aug; 108(3):925-34. PubMed ID: 22572943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity of pectoral fin motoneurons during two swimming gaits in the larval zebrafish (Danio rerio) and localization of upstream circuit elements.
    Green MH; Hale ME
    J Neurophysiol; 2012 Dec; 108(12):3393-402. PubMed ID: 23034362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor pattern in the adult zebrafish spinal cord in vitro.
    Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A
    J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2
    Harmon TC; McLean DL; Raman IM
    J Neurosci; 2020 Apr; 40(15):3063-3074. PubMed ID: 32139583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fictive swimming elicited by electrical stimulation of the midbrain in goldfish.
    Fetcho JR; Svoboda KR
    J Neurophysiol; 1993 Aug; 70(2):765-80. PubMed ID: 8410171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional Diversity of Glycinergic Commissural Inhibitory Neurons in Larval Zebrafish.
    Satou C; Sugioka T; Uemura Y; Shimazaki T; Zmarz P; Kimura Y; Higashijima SI
    Cell Rep; 2020 Mar; 30(9):3036-3050.e4. PubMed ID: 32130905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation.
    Low SE; Zhou W; Choong I; Saint-Amant L; Sprague SM; Hirata H; Cui WW; Hume RI; Kuwada JY
    Dev Neurobiol; 2010 Jun; 70(7):508-22. PubMed ID: 20225246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish.
    Liao JC; Fetcho JR
    J Neurosci; 2008 Nov; 28(48):12982-92. PubMed ID: 19036991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of embryonic red and white muscle fibers during fictive swimming in the developing zebrafish.
    Buss RR; Drapeau P
    J Neurophysiol; 2002 Mar; 87(3):1244-51. PubMed ID: 11877498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of strychnine on fictive swimming in the lamprey: evidence for glycinergic inhibition, discrepancies with model predictions, and novel modulatory rhythms.
    McPherson DR; Buchanan JT; Kasicki S
    J Comp Physiol A; 1994 Sep; 175(3):311-21. PubMed ID: 7932300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal Basis of Direction Control during Locomotion in Larval Zebrafish.
    Jay M; MacIver MA; McLean DL
    J Neurosci; 2023 May; 43(22):4062-4074. PubMed ID: 37127363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swimming of larval zebrafish: fin-axis coordination and implications for function and neural control.
    Thorsen DH; Cassidy JJ; Hale ME
    J Exp Biol; 2004 Nov; 207(Pt 24):4175-83. PubMed ID: 15531638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus frogs.
    von Uckermann G; Le Ray D; Combes D; Straka H; Simmers J
    J Neurosci; 2013 Mar; 33(10):4253-64. PubMed ID: 23467343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.