BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 15673717)

  • 1. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M
    Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms.
    D'Amaro A; Rossi M; Ciaramella M
    Ital J Biochem; 2007 Jun; 56(2):103-9. PubMed ID: 17722650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and functional interaction between archaeal single-stranded DNA-binding protein and the 5'-3' nuclease NurA.
    Wei T; Zhang S; Zhu S; Sheng D; Ni J; Shen Y
    Biochem Biophys Res Commun; 2008 Mar; 367(3):523-9. PubMed ID: 18194801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of chromatin and single strand binding proteins on the activity of an archaeal MCM.
    Marsh VL; McGeoch AT; Bell SD
    J Mol Biol; 2006 Apr; 357(5):1345-50. PubMed ID: 16490210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y; Klostermeier D; Rudolph MG
    Biochemistry; 2011 Jul; 50(26):5816-23. PubMed ID: 21627332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional cooperation between topoisomerase I and single strand DNA-binding protein.
    Sikder D; Unniraman S; Bhaduri T; Nagaraja V
    J Mol Biol; 2001 Mar; 306(4):669-79. PubMed ID: 11243779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse gyrase recruitment to DNA after UV light irradiation in Sulfolobus solfataricus.
    Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M
    J Biol Chem; 2004 Aug; 279(32):33192-8. PubMed ID: 15190074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing.
    del Toro Duany Y; Klostermeier D
    Phys Chem Chem Phys; 2011 Jun; 13(21):10009-19. PubMed ID: 21350762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A; del Toro Duany Y; Klostermeier D
    J Mol Biol; 2013 Jan; 425(1):32-40. PubMed ID: 23123378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse gyrase and genome stability in hyperthermophilic organisms.
    Perugino G; Valenti A; D'amaro A; Rossi M; Ciaramella M
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):69-73. PubMed ID: 19143604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC
    Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and functional interaction of the archaeal single-stranded DNA-binding protein SSB with RNA polymerase.
    Richard DJ; Bell SD; White MF
    Nucleic Acids Res; 2004; 32(3):1065-74. PubMed ID: 14872062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of translesion DNA polymerase by archaeal reverse gyrase.
    Valenti A; Perugino G; Nohmi T; Rossi M; Ciaramella M
    Nucleic Acids Res; 2009 Jul; 37(13):4287-95. PubMed ID: 19443439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the ADP-ribosylating enzyme from the hyperthermophilic archaeon S. solfataricus with DNA and ss-oligo deoxy ribonucleotides.
    Faraone-Mennella MR; Piccialli G; De Luca P; Castellano S; Giordano A; Rigano D; De Napoli L; Farina B
    J Cell Biochem; 2002; 85(1):146-57. PubMed ID: 11891858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties.
    Bizard A; Garnier F; Nadal M
    J Mol Biol; 2011 May; 408(5):839-49. PubMed ID: 21435345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse gyrase binding to DNA alters the double helix structure and produces single-strand cleavage in the absence of ATP.
    Jaxel C; Nadal M; Mirambeau G; Forterre P; Takahashi M; Duguet M
    EMBO J; 1989 Oct; 8(10):3135-9. PubMed ID: 2555155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis.
    Del Toro Duany Y; Ganguly A; Klostermeier D
    Biol Chem; 2014 Jan; 395(1):83-93. PubMed ID: 23959663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage.
    Williams NL; Howells AJ; Maxwell A
    J Mol Biol; 2001 Mar; 306(5):969-84. PubMed ID: 11237612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage detection by an archaeal single-stranded DNA-binding protein.
    Cubeddu L; White MF
    J Mol Biol; 2005 Oct; 353(3):507-16. PubMed ID: 16181640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.