These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1567433)

  • 1. Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus.
    Hatfield D; Choi IS; Mischke S; Owens LD
    Biochem Biophys Res Commun; 1992 Apr; 184(1):254-9. PubMed ID: 1567433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenocysteyl-tRNA occurs in the diatom Thalassiosira and in the ciliate Tetrahymena.
    Hatfield DL; Lee BJ; Price NM; Stadtman TC
    Mol Microbiol; 1991 May; 5(5):1183-6. PubMed ID: 1835508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a selenocysteyl-tRNA(Ser) in mammalian cells that recognizes the nonsense codon, UGA.
    Lee BJ; Worland PJ; Davis JN; Stadtman TC; Hatfield DL
    J Biol Chem; 1989 Jun; 264(17):9724-7. PubMed ID: 2498338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenocysteine inserting tRNAs: an overview.
    Commans S; Böck A
    FEMS Microbiol Rev; 1999 Jun; 23(3):335-51. PubMed ID: 10371037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine.
    Zinoni F; Heider J; Böck A
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4660-4. PubMed ID: 2141170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium metabolism in Drosophila. Characterization of the selenocysteine tRNA population.
    Zhou X; Park SI; Moustafa ME; Carlson BA; Crain PF; Diamond AM; Hatfield DL; Lee BJ
    J Biol Chem; 1999 Jun; 274(26):18729-34. PubMed ID: 10373487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein.
    Forchhammer K; Leinfelder W; Böck A
    Nature; 1989 Nov; 342(6248):453-6. PubMed ID: 2531290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of selenocysteine-containing proteins.
    Gladyshev VN; Hatfield DL
    Curr Protoc Protein Sci; 2001 May; Chapter 3():Unit 3.8. PubMed ID: 18429173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of the biosynthetic pathway of selenocysteine tRNAs in Xenopus oocytes.
    Choi IS; Diamond AM; Crain PF; Kolker JD; McCloskey JA; Hatfield DL
    Biochemistry; 1994 Jan; 33(2):601-5. PubMed ID: 8286391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cysteine tRNAs of plant origin as novel UGA suppressors.
    Urban C; Beier H
    Nucleic Acids Res; 1995 Nov; 23(22):4591-7. PubMed ID: 8524647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenocysteine tRNAs as central components of selenoprotein biosynthesis in eukaryotes.
    Park SI; Park JM; Chittum HS; Yang ES; Carlson BA; Lee BJ; Hatfield DL
    Biomed Environ Sci; 1997 Sep; 10(2-3):116-24. PubMed ID: 9315302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knowing when not to stop: selenocysteine incorporation in eukaryotes.
    Low SC; Berry MJ
    Trends Biochem Sci; 1996 Jun; 21(6):203-8. PubMed ID: 8744353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenocysteine insertion or termination: factors affecting UGA codon fate and complementary anticodon:codon mutations.
    Berry MJ; Harney JW; Ohama T; Hatfield DL
    Nucleic Acids Res; 1994 Sep; 22(18):3753-9. PubMed ID: 7937088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and codon recognition of bean mitochondria and chloroplast tRNAsTrp: evidence for a high degree of homology.
    Maréchal L; Guillemaut P; Grienenberger JM; Jeannin G; Weil JH
    Nucleic Acids Res; 1985 Jun; 13(12):4411-6. PubMed ID: 3847869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The RNA-binding protein Secisbp2 differentially modulates UGA codon reassignment and RNA decay.
    Fradejas-Villar N; Seeher S; Anderson CB; Doengi M; Carlson BA; Hatfield DL; Schweizer U; Howard MT
    Nucleic Acids Res; 2017 Apr; 45(7):4094-4107. PubMed ID: 27956496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon.
    Zinoni F; Birkmann A; Leinfelder W; Böck A
    Proc Natl Acad Sci U S A; 1987 May; 84(10):3156-60. PubMed ID: 3033637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes coding for the selenocysteine-inserting tRNA species from Desulfomicrobium baculatum and Clostridium thermoaceticum: structural and evolutionary implications.
    Tormay P; Wilting R; Heider J; Böck A
    J Bacteriol; 1994 Mar; 176(5):1268-74. PubMed ID: 8113164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of UGA as a selenocysteine codon in eukaryotes: a review of recent progress.
    Berry MJ; Larsen PR
    Biochem Soc Trans; 1993 Nov; 21(4):827-32. PubMed ID: 8132075
    [No Abstract]   [Full Text] [Related]  

  • 19. New Structural Insights into Translational Miscoding.
    Rozov A; Demeshkina N; Westhof E; Yusupov M; Yusupova G
    Trends Biochem Sci; 2016 Sep; 41(9):798-814. PubMed ID: 27372401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenocysteine, a highly specific component of certain enzymes, is incorporated by a UGA-directed co-translational mechanism.
    Böck A; Stadtman TC
    Biofactors; 1988 Oct; 1(3):245-50. PubMed ID: 2978458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.