BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 15674337)

  • 41. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase.
    Lin WJ; Gary JD; Yang MC; Clarke S; Herschman HR
    J Biol Chem; 1996 Jun; 271(25):15034-44. PubMed ID: 8663146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic association between polymorphisms in the BTG1 gene and multiple sclerosis.
    Camiña-Tato M; Morcillo-Suárez C; Navarro A; Fernández M; Horga A; Montalban X; Comabella M
    J Neuroimmunol; 2009 Aug; 213(1-2):142-7. PubMed ID: 19515430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction of BTG1 and p53-regulated BTG2 gene products with mCaf1, the murine homolog of a component of the yeast CCR4 transcriptional regulatory complex.
    Rouault JP; Prévôt D; Berthet C; Birot AM; Billaud M; Magaud JP; Corbo L
    J Biol Chem; 1998 Aug; 273(35):22563-9. PubMed ID: 9712883
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A chromosome 12 coding region is juxtaposed to the MYC protooncogene locus in a t(8;12)(q24;q22) translocation in a case of B-cell chronic lymphocytic leukemia.
    Rimokh R; Rouault JP; Wahbi K; Gadoux M; Lafage M; Archimbaud E; Charrin C; Gentilhomme O; Germain D; Samarut J
    Genes Chromosomes Cancer; 1991 Jan; 3(1):24-36. PubMed ID: 2069907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of BTG1 and BTG2 genes and their effects on insulin in poultry.
    Kulikov EI; Malakheeva LI; Komarchev AS
    Front Physiol; 2024; 15():1315346. PubMed ID: 38357499
    [No Abstract]   [Full Text] [Related]  

  • 46. Cellular reprogramming is driven by widespread rewiring of promoter-enhancer interactions.
    Wang M; He B; Hao Y; Srinivasan D; Shrinet J; Fraser P
    BMC Biol; 2023 Nov; 21(1):264. PubMed ID: 37981682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrated analysis of circRNA, lncRNA, miRNA and mRNA to reveal the ceRNA regulatory network of postnatal skeletal muscle development in Ningxiang pig.
    Yu Z; Xu X; Ai N; Wang K; Zhang P; Li X; LiuFu S; Liu X; Jiang J; Gu J; Gao N; Ma H
    Front Cell Dev Biol; 2023; 11():1185823. PubMed ID: 37465009
    [No Abstract]   [Full Text] [Related]  

  • 48.
    Mlynarczyk C; Teater M; Pae J; Chin CR; Wang L; Arulraj T; Barisic D; Papin A; Hoehn KB; Kots E; Ersching J; Bandyopadhyay A; Barin E; Poh HX; Evans CM; Chadburn A; Chen Z; Shen H; Isles HM; Pelzer B; Tsialta I; Doane AS; Geng H; Rehman MH; Melnick J; Morgan W; Nguyen DTT; Elemento O; Kharas MG; Jaffrey SR; Scott DW; Khelashvili G; Meyer-Hermann M; Victora GD; Melnick A
    Science; 2023 Jan; 379(6629):eabj7412. PubMed ID: 36656933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The roles of
    Zheng HC; Xue H; Zhang CY; Shi KH; Zhang R
    Front Genet; 2022; 13():1006636. PubMed ID: 36339000
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emerging role of anti-proliferative protein BTG1 and BTG2.
    Kim SH; Jung IR; Hwang SS
    BMB Rep; 2022 Aug; 55(8):380-388. PubMed ID: 35880434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conformational transitions in BTG1 antiproliferative protein and their modulation by disease mutants.
    Kots E; Mlynarczyk C; Melnick A; Khelashvili G
    Biophys J; 2022 Oct; 121(19):3753-3764. PubMed ID: 35459639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cystine and Methionine Deficiency Promotes Ferroptosis by Inducing B-Cell Translocation Gene 1.
    Cho IJ; Kim D; Kim EO; Jegal KH; Kim JK; Park SM; Zhao R; Ki SH; Kim SC; Ku SK
    Antioxidants (Basel); 2021 Sep; 10(10):. PubMed ID: 34679678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Key Genes Regulating Skeletal Muscle Development and Growth in Farm Animals.
    Mohammadabadi M; Bordbar F; Jensen J; Du M; Guo W
    Animals (Basel); 2021 Mar; 11(3):. PubMed ID: 33809500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BTG1 Overexpression Might Promote Invasion and Metastasis of Colorectal Cancer
    Zhao S; Xue H; Hao CL; Jiang HM; Zheng HC
    Front Oncol; 2020; 10():598192. PubMed ID: 33330092
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency.
    Ceccarelli M; D'Andrea G; Micheli L; Tirone F
    Front Oncol; 2020; 10():226. PubMed ID: 32231994
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BTG4 is A Novel p53 Target Gene That Inhibits Cell Growth and Induces Apoptosis.
    Zhang N; Jiang T; Wang Y; Wang S; Hu L; Bu Y
    Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32093041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Autophagy inhibition prevents glucocorticoid-increased adiposity via suppressing BAT whitening.
    Deng J; Guo Y; Yuan F; Chen S; Yin H; Jiang X; Jiao F; Wang F; Ji H; Hu G; Ying H; Chen Y; Zhai Q; Xiao F; Guo F
    Autophagy; 2020 Mar; 16(3):451-465. PubMed ID: 31184563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of B-cell translocation gene 1-controlled gene networks in diffuse large B-cell lymphoma: A study based on bioinformatics analysis.
    Yan W; Li SX; Gao H; Yang W
    Oncol Lett; 2019 Mar; 17(3):2825-2835. PubMed ID: 30854058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tumor suppressors BTG1 and BTG2: Beyond growth control.
    Yuniati L; Scheijen B; van der Meer LT; van Leeuwen FN
    J Cell Physiol; 2019 May; 234(5):5379-5389. PubMed ID: 30350856
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of MAFB and MAFF in Retinoid-Mediated Suppression of Hepatocellular Carcinoma Invasion.
    Tsuchiya H; Oura S
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29757260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.