BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 15674976)

  • 1. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis.
    Schulz H; Baranska M; Baranski R
    Biopolymers; 2005 Mar; 77(4):212-21. PubMed ID: 15674976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semiempirical and Raman spectroscopic studies of carotenoids.
    Weesie RJ; Merlin JC; Lugtenburg J; Britton G; Jansen FJ; Cornard JP
    Biospectroscopy; 1999; 5(1):19-33. PubMed ID: 10219878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy.
    Paret ML; Sharma SK; Green LM; Alvarez AM
    Appl Spectrosc; 2010 Apr; 64(4):433-41. PubMed ID: 20412629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of fruit and vegetable intake on skin carotenoid detected by non-invasive Raman spectroscopy.
    Rerksuppaphol S; Rerksuppaphol L
    J Med Assoc Thai; 2006 Aug; 89(8):1206-12. PubMed ID: 17048431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy.
    Schulte F; Mäder J; Kroh LW; Panne U; Kneipp J
    Anal Chem; 2009 Oct; 81(20):8426-33. PubMed ID: 19778038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of peppercorn, pepper oil, and pepper oleoresin by vibrational spectroscopy methods.
    Schulz H; Baranska M; Quilitzsch R; Schütze W; Lösing G
    J Agric Food Chem; 2005 May; 53(9):3358-63. PubMed ID: 15853372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman quantification of nutritionally important carotenoids in fruits, vegetables, and their juices in comparison to high-pressure liquid chromatography analysis.
    Bhosale P; Ermakov IV; Ermakova MR; Gellermann W; Bernstein PS
    J Agric Food Chem; 2004 Jun; 52(11):3281-5. PubMed ID: 15161183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp.
    Davey MW; Saeys W; Hof E; Ramon H; Swennen RL; Keulemans J
    J Agric Food Chem; 2009 Mar; 57(5):1742-51. PubMed ID: 19219999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation model for Raman based skin carotenoid detection.
    Ermakov IV; Gellermann W
    Arch Biochem Biophys; 2010 Dec; 504(1):40-9. PubMed ID: 20678465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman spectroscopy of carotenoids in Photosystem I particles.
    Andreeva A; Velitchkova M
    Biophys Chem; 2005 Apr; 114(2-3):129-35. PubMed ID: 15829346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.).
    Ruiz D; Reich M; Bureau S; Renard CM; Audergon JM
    J Agric Food Chem; 2008 Jul; 56(13):4916-22. PubMed ID: 18557619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared and Raman spectroscopy study of alkyl hydroxamic acid and alkyl hydroxamate isomers.
    Higgins FS; Magliocco LG; Colthup NB
    Appl Spectrosc; 2006 Mar; 60(3):279-87. PubMed ID: 16608571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in carotenoid content and distribution in living plant tissue can be observed and mapped in situ using NIR-FT-Raman spectroscopy.
    Baranski R; Baranska M; Schulz H
    Planta; 2005 Oct; 222(3):448-57. PubMed ID: 16007452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy in combination with background near-infrared autofluorescence enhances the in vivo assessment of malignant tissues.
    Huang Z; Lui H; McLean DI; Korbelik M; Zeng H
    Photochem Photobiol; 2005; 81(5):1219-26. PubMed ID: 15869327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of alkaloids in capsules, milk and ethanolic extracts of poppy (Papaver somniferum L.) by ATR-FT-IR and FT-Raman spectroscopy.
    Schulz H; Baranska M; Quilitzsch R; Schütze W
    Analyst; 2004 Oct; 129(10):917-20. PubMed ID: 15457323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FT-IR, NIR-FT-Raman and gas phase infrared spectra of 3-aminoacetophenone by density functional theory and ab initio Hartree-Fock calculations.
    Subramanian MK; Anbarasan PM; Ilangovan V; Babu SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):59-67. PubMed ID: 18178129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Olive fruit growth and ripening as seen by vibrational spectroscopy.
    López-Sánchez M; Ayora-Cañada MJ; Molina-Díaz A
    J Agric Food Chem; 2010 Jan; 58(1):82-7. PubMed ID: 19916545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NIR-FT-Raman spectroscopic analytical characterization of the fruits, seeds, and phytotherapeutic oils from rosehips.
    da Silva CE; Vandenabeele P; Edwards HG; de Oliveira LF
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1489-96. PubMed ID: 18931992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiberoptic resonance Raman spectroscopy to measure carotenoid oxidative breakdown in live tissues.
    Bentz BG; Diaz J; Ring TA; Wade M; Kennington K; Burnett DM; McClane R; Fitzpatrick FA
    Cancer Prev Res (Phila); 2010 Apr; 3(4):529-38. PubMed ID: 20354162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of human meibum lipid using raman spectroscopy.
    Oshima Y; Sato H; Zaghloul A; Foulks GN; Yappert MC; Borchman D
    Curr Eye Res; 2009 Oct; 34(10):824-35. PubMed ID: 19895310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.