These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15675700)

  • 1. Depth-resolved fluorescence measurement in a layered turbid medium by polarized fluorescence spectroscopy.
    Ghosh N; Majumder SK; Patel HS; Gupta PK
    Opt Lett; 2005 Jan; 30(2):162-4. PubMed ID: 15675700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain.
    Cuccia DJ; Bevilacqua F; Durkin AJ; Tromberg BJ
    Opt Lett; 2005 Jun; 30(11):1354-6. PubMed ID: 15981531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media.
    Liu Q; Ramanujam N
    Opt Lett; 2004 Sep; 29(17):2034-6. PubMed ID: 15455771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium.
    Hall D; Ma G; Lesage F; Wang Y
    Opt Lett; 2004 Oct; 29(19):2258-60. PubMed ID: 15524373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media.
    Hillman EM; Boas DA; Dale AM; Dunn AK
    Opt Lett; 2004 Jul; 29(14):1650-2. PubMed ID: 15309848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence spectra provide information on the depth of fluorescent lesions in tissue.
    Swartling J; Svensson J; Bengtsson D; Terike K; Andersson-Engels S
    Appl Opt; 2005 Apr; 44(10):1934-41. PubMed ID: 15813529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the local optical properties of turbid media by differential path-length spectroscopy.
    Amelink A; Sterenborg HJ
    Appl Opt; 2004 May; 43(15):3048-54. PubMed ID: 15176191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulated imaging in layered media.
    Weber JR; Cuccia DJ; Tromberg BJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6674-6. PubMed ID: 17959483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis.
    Xu M; Alrubaiee M; Gayen SK; Alfano RR
    Appl Opt; 2005 Apr; 44(10):1889-97. PubMed ID: 15818863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy.
    Amelink A; Kruijt B; Robinson DJ; Sterenborg HJ
    J Biomed Opt; 2008; 13(5):054051. PubMed ID: 19021431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration.
    Ong YH; Liu Q
    J Biomed Opt; 2013 Nov; 18(11):110503. PubMed ID: 24247742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-lifetime-based tomography for turbid media.
    Kumar AT; Skoch J; Bacskai BJ; Boas DA; Dunn AK
    Opt Lett; 2005 Dec; 30(24):3347-9. PubMed ID: 16389827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium.
    Dong CY; Koenig K; So P
    J Biomed Opt; 2003 Jul; 8(3):450-9. PubMed ID: 12880351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-scattering-induced artifacts in a complex polymer gel dosimetry phantom.
    Bosi SG; Naseri P; Baldock C
    Appl Opt; 2009 May; 48(13):2427-34. PubMed ID: 19412199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backscattering target detection in a turbid medium by use of circularly and linearly polarized light.
    Kartazayeva SA; Ni X; Alfano RR
    Opt Lett; 2005 May; 30(10):1168-70. PubMed ID: 15943299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.