These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 15676193)
41. A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Schwieger F; Tebbe CC Appl Environ Microbiol; 1998 Dec; 64(12):4870-6. PubMed ID: 9835576 [TBL] [Abstract][Full Text] [Related]
42. Rapid and sensitive detection of Phytophthora colocasiae responsible for the taro leaf blight using conventional and real-time PCR assay. Nath VS; Hegde VM; Jeeva ML; Misra RS; Veena SS; Raj M; Unnikrishnan SK; Darveekaran SS FEMS Microbiol Lett; 2014 Mar; 352(2):174-83. PubMed ID: 24612149 [TBL] [Abstract][Full Text] [Related]
43. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Takenaka S; Sekiguchi H; Nakaho K; Tojo M; Masunaka A; Takahashi H Phytopathology; 2008 Feb; 98(2):187-95. PubMed ID: 18943195 [TBL] [Abstract][Full Text] [Related]
44. A PCR-RFLP assay for identification and detection of Pythium myriotylum, causal agent of the cocoyam root rot disease. Gómez-Alpízar L; Saalau E; Picado I; Tambong JT; Saborío F Lett Appl Microbiol; 2011 Mar; 52(3):185-92. PubMed ID: 21204883 [TBL] [Abstract][Full Text] [Related]
45. DNA-based method for rapid identification of the pine pathogen, Phytophthora pinifolia. Durán A; Slippers B; Gryzenhout M; Ahumada R; Drenth A; Wingfield BD; Wingfield MJ FEMS Microbiol Lett; 2009 Sep; 298(1):99-104. PubMed ID: 19659729 [TBL] [Abstract][Full Text] [Related]
46. Application of the PCR technique to detect Phytophthora infestans in potato tubers and leaves. Niepold F; Schöber-Butin B Microbiol Res; 1995 Nov; 150(4):379-85. PubMed ID: 8564366 [TBL] [Abstract][Full Text] [Related]
47. Culture-independent methods for identifying microbial communities in cheese. Jany JL; Barbier G Food Microbiol; 2008 Oct; 25(7):839-48. PubMed ID: 18721671 [TBL] [Abstract][Full Text] [Related]
49. Co-occurrence and genotypic distribution of Phytophthora species recovered from watersheds and plant nurseries of eastern Tennessee. Hulvey J; Gobena D; Finley L; Lamour K Mycologia; 2010; 102(5):1127-33. PubMed ID: 20943511 [TBL] [Abstract][Full Text] [Related]
50. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Tooley PW; Bunyard BA; Carras MM; Hatziloukas E Appl Environ Microbiol; 1997 Apr; 63(4):1467-75. PubMed ID: 9097445 [TBL] [Abstract][Full Text] [Related]
51. PCR-based detection of Pythium and Lagendium DNA in frozen and ethanol-fixed animal tissues. Znajda NR; Grooters AM; Marsella R Vet Dermatol; 2002 Aug; 13(4):187-94. PubMed ID: 12229858 [No Abstract] [Full Text] [Related]
53. Oomycete Species Associated with Soybean Seedlings in North America-Part II: Diversity and Ecology in Relation to Environmental and Edaphic Factors. Rojas JA; Jacobs JL; Napieralski S; Karaj B; Bradley CA; Chase T; Esker PD; Giesler LJ; Jardine DJ; Malvick DK; Markell SG; Nelson BD; Robertson AE; Rupe JC; Smith DL; Sweets LE; Tenuta AU; Wise KA; Chilvers MI Phytopathology; 2017 Mar; 107(3):293-304. PubMed ID: 27841963 [TBL] [Abstract][Full Text] [Related]
54. Association of soil chemical and physical properties with Pythium species diversity, community composition, and disease incidence. Broders KD; Wallhead MW; Austin GD; Lipps PE; Paul PA; Mullen RW; Dorrance AE Phytopathology; 2009 Aug; 99(8):957-67. PubMed ID: 19594315 [TBL] [Abstract][Full Text] [Related]
55. Detection of Phytophthora capsici in Irrigation Water using Loop-Mediated Isothermal Amplification. Hudson O; Waliullah S; Hand J; Gazis-Seregina R; Baysal-Gurel F; Ali ME J Vis Exp; 2020 Jun; (160):. PubMed ID: 32658194 [TBL] [Abstract][Full Text] [Related]
56. Differences in the rhizosphere bacterial community of a transplastomic tobacco plant compared to its non-engineered counterpart. Brinkmann N; Tebbe CC Environ Biosafety Res; 2007; 6(1-2):113-9. PubMed ID: 17961485 [TBL] [Abstract][Full Text] [Related]
57. Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. He J; Xu Z; Hughes J FEMS Microbiol Lett; 2005 Jun; 247(1):91-100. PubMed ID: 15927752 [TBL] [Abstract][Full Text] [Related]
58. Multiple displacement amplification as a pre-polymerase chain reaction (pre-PCR) to detect ultra low population of Ralstonia solanacearum (Smith 1896) Yabuchi et al. (1996). Grover A; Azmi W; Paul Khurana SM; Chakrabarti SK Lett Appl Microbiol; 2009 Nov; 49(5):539-43. PubMed ID: 19780955 [TBL] [Abstract][Full Text] [Related]
59. Rapid and equipment-free detection of Phytophthora capsici using lateral flow strip-based recombinase polymerase amplification assay. Yu J; Shen D; Dai T; Lu X; Xu H; Dou D Lett Appl Microbiol; 2019 Jul; 69(1):64-70. PubMed ID: 31021437 [TBL] [Abstract][Full Text] [Related]
60. Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum, in infected ginger rhizomes. Wang PH; Chung CY; Lin YS; Yeh Y Lett Appl Microbiol; 2003; 36(2):116-20. PubMed ID: 12535133 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]