BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 15677487)

  • 1. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets.
    Goldstein BJ; Mahadev K; Wu X
    Diabetes; 2005 Feb; 54(2):311-21. PubMed ID: 15677487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of insulin-induced reactive oxygen species in the insulin signaling pathway.
    Goldstein BJ; Mahadev K; Wu X; Zhu L; Motoshima H
    Antioxid Redox Signal; 2005; 7(7-8):1021-31. PubMed ID: 15998257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species as mediators of cell adhesion.
    Chiarugi P
    Ital J Biochem; 2003 Mar; 52(1):28-32. PubMed ID: 12833635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downstream targets and intracellular compartmentalization in Nox signaling.
    Chen K; Craige SE; Keaney JF
    Antioxid Redox Signal; 2009 Oct; 11(10):2467-80. PubMed ID: 19309256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mitochondrial reactive oxygen species regulator p66Shc controls PDGF-induced signaling and migration through protein tyrosine phosphatase oxidation.
    Frijhoff J; Dagnell M; Augsten M; Beltrami E; Giorgio M; Östman A
    Free Radic Biol Med; 2014 Mar; 68():268-77. PubMed ID: 24378437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.
    Wang SB; Jang JY; Chae YH; Min JH; Baek JY; Kim M; Park Y; Hwang GS; Ryu JS; Chang TS
    Free Radic Biol Med; 2015 Jun; 83():41-53. PubMed ID: 25645952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperglycemia potentiates H(2)O(2) production in adipocytes and enhances insulin signal transduction: potential role for oxidative inhibition of thiol-sensitive protein-tyrosine phosphatases.
    Wu X; Zhu L; Zilbering A; Mahadev K; Motoshima H; Yao J; Goldstein BJ
    Antioxid Redox Signal; 2005; 7(5-6):526-37. PubMed ID: 15889998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B.
    Meng TC; Buckley DA; Galic S; Tiganis T; Tonks NK
    J Biol Chem; 2004 Sep; 279(36):37716-25. PubMed ID: 15192089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases.
    Lee JK; Edderkaoui M; Truong P; Ohno I; Jang KT; Berti A; Pandol SJ; Gukovskaya AS
    Gastroenterology; 2007 Nov; 133(5):1637-48. PubMed ID: 17983808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidants in Physiological Processes.
    Knaus UG
    Handb Exp Pharmacol; 2021; 264():27-47. PubMed ID: 32767144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion.
    Chiarugi P; Pani G; Giannoni E; Taddei L; Colavitti R; Raugei G; Symons M; Borrello S; Galeotti T; Ramponi G
    J Cell Biol; 2003 Jun; 161(5):933-44. PubMed ID: 12796479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR.
    Tabet F; Schiffrin EL; Callera GE; He Y; Yao G; Ostman A; Kappert K; Tonks NK; Touyz RM
    Circ Res; 2008 Jul; 103(2):149-58. PubMed ID: 18566342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods to monitor classical protein-tyrosine phosphatase oxidation.
    Karisch R; Neel BG
    FEBS J; 2013 Jan; 280(2):459-75. PubMed ID: 22577968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmentalization of redox signaling through NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Antioxid Redox Signal; 2009 Jun; 11(6):1289-99. PubMed ID: 18999986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of plasma membrane redox systems in hormone action.
    Incerpi S; Fiore AM; De Vito P; Pedersen JZ
    J Pharm Pharmacol; 2007 Dec; 59(12):1711-20. PubMed ID: 18053334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox signaling mediated by the gut microbiota.
    Jones RM; Neish AS
    Free Radic Biol Med; 2017 Apr; 105():41-47. PubMed ID: 27989756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers.
    Felty Q; Xiong WC; Sun D; Sarkar S; Singh KP; Parkash J; Roy D
    Biochemistry; 2005 May; 44(18):6900-9. PubMed ID: 15865435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxiredoxin 2 mediates insulin sensitivity of skeletal muscles through regulation of protein tyrosine phosphatase oxidation.
    Kim JH; Park SJ; Chae U; Seong J; Lee HS; Lee SR; Lee S; Lee DS
    Int J Biochem Cell Biol; 2018 Jun; 99():80-90. PubMed ID: 29605633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers.
    Forman HJ; Fukuto JM; Torres M
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C246-56. PubMed ID: 15238356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions and mechanisms of redox regulation of cysteine-based phosphatases.
    Salmeen A; Barford D
    Antioxid Redox Signal; 2005; 7(5-6):560-77. PubMed ID: 15890001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.