These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15677720)

  • 1. Wetting morphologies at microstructured surfaces.
    Seemann R; Brinkmann M; Kramer EJ; Lange FF; Lipowsky R
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1848-52. PubMed ID: 15677720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting morphologies and their transitions in grooved substrates.
    Seemann R; Brinkmann M; Herminghaus S; Khare K; Law BM; McBride S; Kostourou K; Gurevich E; Bommer S; Herrmann C; Michler D
    J Phys Condens Matter; 2011 May; 23(18):184108. PubMed ID: 21508471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrowetting actuated microfluidic transport in surface grooves with triangular cross section.
    Barman J; Swain D; Law BM; Seemann R; Herminghaus S; Khare K
    Langmuir; 2015 Jan; 31(3):1231-6. PubMed ID: 25531036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport dynamics in open microfluidic grooves.
    Baret JC; Decré MM; Herminghaus S; Seemann R
    Langmuir; 2007 Apr; 23(9):5200-4. PubMed ID: 17378595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves.
    Khare K; Zhou J; Yang S
    Langmuir; 2009 Nov; 25(21):12794-9. PubMed ID: 19572521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switching liquid morphologies on linear grooves.
    Khare K; Herminghaus S; Baret JC; Law BM; Brinkmann M; Seemann R
    Langmuir; 2007 Dec; 23(26):12997-3006. PubMed ID: 18001065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces.
    Chang JH; Hunter IW
    Macromol Rapid Commun; 2011 May; 32(9-10):718-23. PubMed ID: 21544891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light Responsive Microstructured Surfaces of Liquid Crystalline Network with Shape Memory and Tunable Wetting Behaviors.
    Wu ZL; Wang ZJ; Keller P; Zheng Q
    Macromol Rapid Commun; 2016 Feb; 37(4):311-7. PubMed ID: 26676211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow.
    Ashish Saha A; Mitra SK
    J Colloid Interface Sci; 2009 Nov; 339(2):461-80. PubMed ID: 19732904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-directed boundary flow in microfluidic channels.
    Huang TT; Taylor DG; Lim KS; Sedlak M; Bashir R; Mosier NS; Ladisch MR
    Langmuir; 2006 Jul; 22(14):6429-37. PubMed ID: 16800710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact line pinning on microstructured surfaces for liquids in the Wenzel state.
    Forsberg PS; Priest C; Brinkmann M; Sedev R; Ralston J
    Langmuir; 2010 Jan; 26(2):860-5. PubMed ID: 19702258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of surface roughness on capillary rise in micro-grooves.
    Bamorovat Abadi G; Bahrami M
    Sci Rep; 2022 Sep; 12(1):14867. PubMed ID: 36050409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-demand droplet loading for automated organic chemistry on digital microfluidics.
    Shah GJ; Ding H; Sadeghi S; Chen S; Kim CJ; van Dam RM
    Lab Chip; 2013 Jul; 13(14):2785-95. PubMed ID: 23670035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces.
    Yang J; Rose FR; Gadegaard N; Alexander MR
    Langmuir; 2009 Mar; 25(5):2567-71. PubMed ID: 19437741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dewetting of liquid filaments in wedge-shaped grooves.
    Khare K; Brinkmann M; Law BM; Gurevich EL; Herminghaus S; Seemann R
    Langmuir; 2007 Nov; 23(24):12138-41. PubMed ID: 17960943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polygonal non-wetting droplets on microtextured surfaces.
    Lou J; Shi S; Ma C; Zhou X; Huang D; Zheng Q; Lv C
    Nat Commun; 2022 May; 13(1):2685. PubMed ID: 35562518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of wetting state switching of droplets on superhydrophobic microstructured surfaces by external electric field.
    Wen K; Chen X; Cheng S; Wang X; Ma H; Song Q; Zhao Q; Tian H; Zhang J; Shao J
    J Colloid Interface Sci; 2024 Oct; 672():533-542. PubMed ID: 38852354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale wetting on groove-patterned surfaces.
    Yong X; Zhang LT
    Langmuir; 2009 May; 25(9):5045-53. PubMed ID: 19326936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.