These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 15677720)

  • 41. Wettability studies of topologically distinct titanium surfaces.
    Kulkarni M; Patil-Sen Y; Junkar I; Kulkarni CV; Lorenzetti M; Iglič A
    Colloids Surf B Biointerfaces; 2015 May; 129():47-53. PubMed ID: 25819365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering the surface properties of microfluidic stickers.
    Levaché B; Azioune A; Bourrel M; Studer V; Bartolo D
    Lab Chip; 2012 Sep; 12(17):3028-31. PubMed ID: 22855124
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Asymmetric wetting hysteresis on hydrophobic microstructured surfaces.
    Priest C; Albrecht TW; Sedev R; Ralston J
    Langmuir; 2009 May; 25(10):5655-60. PubMed ID: 19275196
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and characterization of plasma processed surfaces with tuned wettability.
    Ruiz A; Valsesia A; Ceccone G; Gilliland D; Colpo P; Rossi F
    Langmuir; 2007 Dec; 23(26):12984-9. PubMed ID: 18020471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A new wetting mechanism based upon triple contact line pinning.
    Liu J; Mei Y; Xia R
    Langmuir; 2011 Jan; 27(1):196-200. PubMed ID: 21117687
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphological Transitions of Droplets Wetting a Series of Triangular Grooves.
    Dokowicz M; Nowicki W
    Langmuir; 2016 Jul; 32(28):7259-64. PubMed ID: 27347695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wetting transition on hydrophobic surfaces covered by polyelectrolyte brushes.
    Muller P; Sudre G; Théodoly O
    Langmuir; 2008 Sep; 24(17):9541-50. PubMed ID: 18652425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Small degree of anisotropic wetting on self-similar hierarchical wrinkled surfaces.
    Lin G; Zhang Q; Lv C; Tang Y; Yin J
    Soft Matter; 2018 Feb; 14(9):1517-1529. PubMed ID: 29345710
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anisotropy in the wetting of rough surfaces.
    Chen Y; He B; Lee J; Patankar NA
    J Colloid Interface Sci; 2005 Jan; 281(2):458-64. PubMed ID: 15571703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces.
    Kumar V; Sridhar S; Errington JR
    J Chem Phys; 2011 Nov; 135(18):184702. PubMed ID: 22088073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface.
    Wang S; Wang T; Ge P; Xue P; Ye S; Chen H; Li Z; Zhang J; Yang B
    Langmuir; 2015 Apr; 31(13):4032-9. PubMed ID: 25782074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Driving droplet by scale effect on microstructured hydrophobic surfaces.
    Lv C; Hao P
    Langmuir; 2012 Dec; 28(49):16958-65. PubMed ID: 23140387
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A control method for steering individual particles inside liquid droplets actuated by electrowetting.
    Walker S; Shapiro B
    Lab Chip; 2005 Dec; 5(12):1404-7. PubMed ID: 16286973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Superwetting Surfaces under Different Media: Effects of Surface Topography on Wettability.
    Zhang P; Wang S; Wang S; Jiang L
    Small; 2015 Apr; 11(16):1939-46. PubMed ID: 25504764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface.
    Zhao Y; Lu Q; Li M; Li X
    Langmuir; 2007 May; 23(11):6212-7. PubMed ID: 17465584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of various treatment and glazing (coating) techniques on the roughness and wettability of ceramic dental restorative surfaces.
    Aksoy G; Polat H; Polat M; Coskun G
    Colloids Surf B Biointerfaces; 2006 Dec; 53(2):254-9. PubMed ID: 17097279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces.
    Ledesma-Aguilar R; Hernández-Machado A; Pagonabarraga I
    Phys Rev Lett; 2013 Jun; 110(26):264502. PubMed ID: 23848879
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maximum Spreading of Liquid Drops Impacting on Groove-Textured Surfaces: Effect of Surface Texture.
    Vaikuntanathan V; Sivakumar D
    Langmuir; 2016 Mar; 32(10):2399-409. PubMed ID: 26885767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anisotropic wetting behavior arising from superhydrophobic surfaces: parallel grooved structure.
    Li W; Fang G; Li Y; Qiao G
    J Phys Chem B; 2008 Jun; 112(24):7234-43. PubMed ID: 18491941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.