These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15677860)

  • 1. Myelinogenesis in the brachial and lumbosacral enlargements of the spinal cord of the opossum Monodelphis domestica.
    Lamoureux S; Gingras J; Cabana T
    Brain Behav Evol; 2005; 65(3):143-56. PubMed ID: 15677860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptogenesis in the brachial and lumbosacral enlargements of the spinal cord in the postnatal opossum, Monodelphis domestica.
    Gingras J; Cabana T
    J Comp Neurol; 1999 Nov; 414(4):551-60. PubMed ID: 10531545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myelination of the ventral and dorsal roots of the C8 and L4 segments of the spinal cord at different stages of development in the gray opossum, Monodelphis domestica.
    Leblond H; Cabana T
    J Comp Neurol; 1997 Sep; 386(2):203-16. PubMed ID: 9295147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal development of limb motor innervation in the opossum Monodelphis domestica: immunohistochemical localization of acetylcholine.
    Barthélemy D; Cabana T
    Brain Res Dev Brain Res; 2005 Mar; 155(2):87-98. PubMed ID: 15804397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development of synaptophysin-like immunoreactivity in the lumbosacral enlargement of the spinal cord of the opossum Monodelphis domestica.
    Gingras J; Cabana T
    Brain Res Dev Brain Res; 1998 Mar; 106(1-2):211-5. PubMed ID: 9555018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development of the ipsilateral corticospinal component in rat spinal cord: a light and electron microscopic anterograde HRP study.
    Joosten EA; Schuitman RL; Vermelis ME; Dederen PJ
    J Comp Neurol; 1992 Dec; 326(1):133-46. PubMed ID: 1479066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine structure and development of dorsal root ganglion neurons and Schwann cells in the newborn opossum Monodelphis domestica.
    Fernández J; Nicholls JG
    J Comp Neurol; 1998 Jul; 396(3):338-50. PubMed ID: 9624588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of the neuronal gap junction protein Connexin36 in the spinal cord enlargements of developing and adult opossums, Monodelphis domestica.
    Lemieux M; Cabana T; Pflieger JF
    Brain Behav Evol; 2010; 75(1):23-32. PubMed ID: 20134154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The development of mammalian motor systems: the opossum Monodelphis domestica as a model.
    Cabana T
    Brain Res Bull; 2000 Nov; 53(5):615-26. PubMed ID: 11165797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primary sensory afferent innervation of the developing superficial dorsal horn in the South American opossum Monodelphis domestica.
    Kitchener PD; Hutton EJ; Knott GW
    J Comp Neurol; 2006 Mar; 495(1):37-52. PubMed ID: 16432898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana.
    Pindzola RR; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental expression of spontaneous activity in the spinal cord of postnatal opossums, Monodelphis domestica: an anatomical study.
    Lavallée A; Pflieger JF
    Brain Res; 2009 Jul; 1282():1-9. PubMed ID: 19501058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules.
    Varga ZM; Bandtlow CE; Erulkar SD; Schwab ME; Nicholls JG
    Eur J Neurosci; 1995 Oct; 7(10):2119-29. PubMed ID: 8542069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of myelinated nerve fibers in the sixth cranial nerve of the rat: a quantitative electron microscope study.
    Hahn AF; Chang Y; Webster HD
    J Comp Neurol; 1987 Jun; 260(4):491-500. PubMed ID: 3611408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental plasticity of reticulospinal and vestibulospinal axons in the north American opossum, Didelphis virginiana.
    Wang XM; Qin YQ; Xu XM; Martin GF
    J Comp Neurol; 1994 Nov; 349(2):288-302. PubMed ID: 7860784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat.
    Dutton RC; Carstens MI; Antognini JF; Carstens E
    Brain Res; 2006 Nov; 1119(1):76-85. PubMed ID: 16996042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an astrocytic response to lesions of the spinal cord in the North American opossum: an immunohistochemical study using anti-glial fibrillary acidic protein.
    Ghooray GT; Martin GF
    Glia; 1993 Sep; 9(1):10-7. PubMed ID: 8244527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo.
    Shiga T; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Mar; 305(1):83-95. PubMed ID: 1709651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum.
    Xu XM; Martin GF
    J Comp Neurol; 1991 Nov; 313(1):103-12. PubMed ID: 1761748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Populations of myelinated nerve fibers in the C8 and L4 ventral and dorsal roots in the opossum, Monodelphis domestica.
    Leblond H; Cabana T
    Acta Anat (Basel); 1996; 155(3):194-9. PubMed ID: 8870787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.