These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 1567836)
1. Stopped-flow kinetic analysis of the bacterial luciferase reaction. Abu-Soud H; Mullins LS; Baldwin TO; Raushel FM Biochemistry; 1992 Apr; 31(15):3807-13. PubMed ID: 1567836 [TBL] [Abstract][Full Text] [Related]
2. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase. Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299 [TBL] [Abstract][Full Text] [Related]
3. Interaction of bacterial luciferase with aldehyde substrates and inhibitors. Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032 [TBL] [Abstract][Full Text] [Related]
4. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction. Watanabe T; Nakamura T J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335 [TBL] [Abstract][Full Text] [Related]
5. Studies on luciferase from Photobacterium phosphoreum. IX. Further studies on the spectroscopic characteristics of the enzyme-FMN intermediates. Ashizawa N; Nakamura T; Watanabe T J Biochem; 1977 Apr; 81(4):1057-62. PubMed ID: 881410 [TBL] [Abstract][Full Text] [Related]
6. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity. Nijvipakul S; Ballou DP; Chaiyen P Biochemistry; 2010 Nov; 49(43):9241-8. PubMed ID: 20836540 [TBL] [Abstract][Full Text] [Related]
7. Bioluminescence emission of bacterial luciferase with 1-deaza-FMN. Evidence for the noninvolvement of N(1)-protonated flavin species as emitters. Kurfürst M; Macheroux P; Ghisla S; Hastings JW Eur J Biochem; 1989 May; 181(2):453-7. PubMed ID: 2714296 [TBL] [Abstract][Full Text] [Related]
8. Protonation status and control mechanism of flavin-oxygen intermediates in the reaction of bacterial luciferase. Tinikul R; Lawan N; Akeratchatapan N; Pimviriyakul P; Chinantuya W; Suadee C; Sucharitakul J; Chenprakhon P; Ballou DP; Entsch B; Chaiyen P FEBS J; 2021 May; 288(10):3246-3260. PubMed ID: 33289305 [TBL] [Abstract][Full Text] [Related]
9. Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives. Francisco WA; Abu-Soud HM; Topgi R; Baldwin TO; Raushel FM J Biol Chem; 1996 Jan; 271(1):104-10. PubMed ID: 8550543 [TBL] [Abstract][Full Text] [Related]
10. Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical. Kurfürst M; Ghisla S; Presswood R; Hastings JW Eur J Biochem; 1982 Apr; 123(2):355-61. PubMed ID: 6978813 [TBL] [Abstract][Full Text] [Related]
11. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function. Li Z; Meighen EA Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121 [TBL] [Abstract][Full Text] [Related]
12. Binding of 2,2-diphenylpropylamine at the aldehyde site of bacterial luciferase increases the affinity of the reduced riboflavin 5'-phosphate site. Holzman TF; Baldwin TO Biochemistry; 1981 Sep; 20(19):5524-8. PubMed ID: 7295690 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of 8-anilino-1-naphthalenesulfonate upon binding of oxidized and reduced flavines by bacterial luciferase. Tu S; Hastings JW Biochemistry; 1975 Sep; 14(19):4310-6. PubMed ID: 810158 [TBL] [Abstract][Full Text] [Related]
14. The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. Hastings JW; Balny C J Biol Chem; 1975 Sep; 250(18):7288-93. PubMed ID: 809433 [TBL] [Abstract][Full Text] [Related]
15. Bacterial bioluminescence: equilibrium association measurements, quantum yields, reaction kinetics, and overall reaction scheme. Lee J; Murphy CL Biochemistry; 1975 May; 14(10):2259-68. PubMed ID: 807236 [TBL] [Abstract][Full Text] [Related]
16. The effect of luciferase and NADH:FMN oxidoreductase concentrations on the light kinetics of bacterial bioluminescence. Lavi J; Raunio R; Malkov Y; Lövgren T Biochem Biophys Res Commun; 1983 Feb; 111(1):266-73. PubMed ID: 6830592 [TBL] [Abstract][Full Text] [Related]
17. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate. Li H; Ortego BC; Maillard KI; Willson RC; Tu SC Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Eckstein JW; Hastings JW; Ghisla S Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349 [TBL] [Abstract][Full Text] [Related]
19. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065 [TBL] [Abstract][Full Text] [Related]
20. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Valkova N; Szittner R; Meighen EA Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]