These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 1567874)

  • 21. Local conformation of rabbit skeletal myosin rod filaments probed by intrinsic tryptophan fluorescence.
    Chang YC; Ludescher RD
    Biochemistry; 1994 Mar; 33(8):2313-21. PubMed ID: 8117688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II.
    Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG
    Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics.
    Martinho JM; Santos AM; Fedorov A; Baptista RP; Taipa MA; Cabral JM
    Photochem Photobiol; 2003 Jul; 78(1):15-22. PubMed ID: 12929743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase.
    Ross JB; Schmidt CJ; Brand L
    Biochemistry; 1981 Jul; 20(15):4369-77. PubMed ID: 7025898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-resolved fluorescence studies of genetically engineered Escherichia coli glutamine synthetase. Effects of ATP on the tryptophan-57 loop.
    Atkins WM; Stayton PS; Villafranca JJ
    Biochemistry; 1991 Apr; 30(14):3406-16. PubMed ID: 1672820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar.
    Swaminathan R; Nath U; Udgaonkar JB; Periasamy N; Krishnamoorthy G
    Biochemistry; 1996 Jul; 35(28):9150-7. PubMed ID: 8703920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frequency-domain fluorescence studies of an extracellular metalloproteinase of Staphylococcus aureus.
    Wasylewski Z; Eftink MR
    Biochim Biophys Acta; 1987 Oct; 915(3):331-41. PubMed ID: 3115297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence studies on the Ca2+ and Zn2+ binding properties of the alpha-subunit of bovine brain S-100a protein.
    Leung IK; Mani RS; Kay CM
    FEBS Lett; 1987 Apr; 214(1):35-40. PubMed ID: 3569515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Steady state and picosecond time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase.
    Sau AK; Mitra S
    Biochim Biophys Acta; 2000 Sep; 1481(2):273-82. PubMed ID: 11018718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fluorescence study of tryptophan-histidine interactions in the peptide anantin and in solution.
    Vos R; Engelborghs Y
    Photochem Photobiol; 1994 Jul; 60(1):24-32. PubMed ID: 8073074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-resolved fluorescence of S-100a protein: effect of Ca2+, Mg2+ and unilamellar vesicles of egg phosphatidylcholine.
    Zolese G; Giambanco I; Curatola G; Staffolani R; Gratton E; Donato R
    Cell Calcium; 1996 Dec; 20(6):465-74. PubMed ID: 8985591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of molten globule state of fetuin at low pH.
    Naseem F; Khan RH; Haq SK; Naeem A
    Biochim Biophys Acta; 2003 Jul; 1649(2):164-70. PubMed ID: 12878035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH-induced structural change of a multi-tryptophan protein MPT63 with immunoglobulin-like fold: identification of perturbed tryptophan residue/residues.
    Mukherjee M; Ghosh R; Chattopadhyay K; Ghosh S
    J Biomol Struct Dyn; 2015; 33(10):2145-60. PubMed ID: 25599137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sub-structures formed in the excited state are responsible for tryptophan residues fluorescence in β-lactoglobulin.
    Albani JR
    J Fluoresc; 2011 Jul; 21(4):1683-7. PubMed ID: 21350857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence study of the three tryptophan residues of the pore-forming domain of colicin A using multifrequency phase fluorometry.
    Vos R; Engelborghs Y; Izard J; Baty D
    Biochemistry; 1995 Feb; 34(5):1734-43. PubMed ID: 7849033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment.
    Pan CP; Muiño PL; Barkley MD; Callis PR
    J Phys Chem B; 2011 Mar; 115(12):3245-53. PubMed ID: 21370844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanosecond study of fluorescently labeled troponin C.
    Wang CK; Liao R; Cheung HC
    Biochim Biophys Acta; 1992 May; 1121(1-2):16-22. PubMed ID: 1599937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tryptophan fluorescence of terminal deoxynucleotidyl transferase: effects of quenchers on time-resolved emission spectra.
    Robbins DJ; Deibel MR; Barkley MD
    Biochemistry; 1985 Dec; 24(25):7250-7. PubMed ID: 4084579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyrosine and tyrosinate fluorescence of S-100b. A time-resolved nanosecond fluorescence study. The effect of pH, Ca(II), and Zn(II).
    Turner RJ; Roche RS; Mani RS; Kay CM
    Biochem Cell Biol; 1989; 67(4-5):179-86. PubMed ID: 2775527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.