These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 15678797)

  • 1. A quantitative method for analysing neuron networks marked by acetylcholinesterase histochemistry.
    Camargo LH; Forero MG; Sarmiento L; Caldas ML
    Biomedica; 2004 Dec; 24(4):345-9. PubMed ID: 15678797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative histochemistry technique for measuring regional distribution of acetylcholinesterase in the brain using digital scanning densitometry.
    Ma T; Cai Z; Wellman SE; Ho IK
    Anal Biochem; 2001 Sep; 296(1):18-28. PubMed ID: 11520028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal networks in Alzheimer's disease.
    He Y; Chen Z; Gong G; Evans A
    Neuroscientist; 2009 Aug; 15(4):333-50. PubMed ID: 19458383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Computer-based image analysis for experimental and clinical morphology--principles, utilization and marginal limits].
    Seufert R; Pfarrer C; Leiser R; Lellé R
    Zentralbl Gynakol; 1999; 121(5):260-4. PubMed ID: 10408082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network atrophy in temporal lobe epilepsy: a voxel-based morphometry study.
    Bonilha L; Halford JJ
    Neurology; 2009 Jun; 72(23):2052; author reply 2052. PubMed ID: 19506231
    [No Abstract]   [Full Text] [Related]  

  • 6. Community structure and modularity in networks of correlated brain activity.
    Schwarz AJ; Gozzi A; Bifone A
    Magn Reson Imaging; 2008 Sep; 26(7):914-20. PubMed ID: 18479871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward the neurocomputer: image processing and pattern recognition with neuronal cultures.
    Ruaro ME; Bonifazi P; Torre V
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):371-83. PubMed ID: 15759567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of large-scale networks in the brain using fMRI.
    Bellec P; Perlbarg V; Jbabdi S; Pélégrini-Issac M; Anton JL; Doyon J; Benali H
    Neuroimage; 2006 Feb; 29(4):1231-43. PubMed ID: 16246590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined method to estimate parameters of neuron from a heavily noise-corrupted time series of active potential.
    Deng B; Wang J; Che Y
    Chaos; 2009 Mar; 19(1):015105. PubMed ID: 19335009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined functional and causal connectivity analyses of language networks in children: a feasibility study.
    Wilke M; Lidzba K; Krägeloh-Mann I
    Brain Lang; 2009 Jan; 108(1):22-9. PubMed ID: 18952275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-automated image processing system for micro- to macro-scale analysis of immunohistopathology: application to ischemic brain tissue.
    Wu C; Zhao W; Lin B; Ginsberg MD
    Comput Methods Programs Biomed; 2005 Apr; 78(1):75-86. PubMed ID: 15780892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining neurocognitive networks in the BOLD new world of computed connectivity.
    Mesulam M
    Neuron; 2009 Apr; 62(1):1-3. PubMed ID: 19376059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, alpha-bungarotoxin, and acetylcholinesterase.
    Kallmünzer B; Sörensen B; Neuhuber WL; Wörl J
    Cell Tissue Res; 2006 May; 324(2):181-8. PubMed ID: 16437206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microphotometric dynamic analysis of the histochemical acetylcholinesterase reaction.
    Budantsev AY; Kornilova O; Medvedev B
    Biotech Histochem; 2007 Dec; 82(6):311-7. PubMed ID: 18097797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intrinsic functional organization of the brain is altered in autism.
    Kennedy DP; Courchesne E
    Neuroimage; 2008 Feb; 39(4):1877-85. PubMed ID: 18083565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mouse model for studying large-scale neuronal networks using EEG mapping techniques.
    Mégevand P; Quairiaux C; Lascano AM; Kiss JZ; Michel CM
    Neuroimage; 2008 Aug; 42(2):591-602. PubMed ID: 18585931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Videomicroscopy, image processing, and analysis of whole histologic sections of the human brain.
    Schmitt O; Eggers R; Modersitzki J
    Microsc Res Tech; 2005 Mar; 66(4):203-18. PubMed ID: 15889428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple brain networks for visual self-recognition with different sensitivity for motion and body part.
    Sugiura M; Sassa Y; Jeong H; Miura N; Akitsuki Y; Horie K; Sato S; Kawashima R
    Neuroimage; 2006 Oct; 32(4):1905-17. PubMed ID: 16806977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional reconstruction and quantitative analysis of the brain stem nuclei based on fast centroid auto-registration.
    Chen YC; Hu KH; Li FZ; Su WF; Zhang BL
    Biomed Mater Eng; 2006; 16(1):67-75. PubMed ID: 16410645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of functional connectivity changes on support vector machines mapping of fMRI data.
    Sato JR; Mourão-Miranda J; Morais Martin Mda G; Amaro E; Morettin PA; Brammer MJ
    J Neurosci Methods; 2008 Jul; 172(1):94-104. PubMed ID: 18499266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.